{"title":"金融工程模型中的分数布朗运动","authors":"V. Yanishevskyi, L. Nodzhak","doi":"10.23939/mmc2023.02.445","DOIUrl":null,"url":null,"abstract":"An application of fractional Brownian motion (fBm) is considered in stochastic financial engineering models. For the known Fokker–Planck equation for the fBm case, a solution for transition probability density for the path integral method was built. It is shown that the mentioned solution does not result from the Gaussian unit of fBm with precise covariance. An expression for approximation of fBm covariance was found for which solutions are found based on the Gaussian measure of fBm and those found based on the known Fokker–Planck equation match.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractional Brownian motion in financial engineering models\",\"authors\":\"V. Yanishevskyi, L. Nodzhak\",\"doi\":\"10.23939/mmc2023.02.445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application of fractional Brownian motion (fBm) is considered in stochastic financial engineering models. For the known Fokker–Planck equation for the fBm case, a solution for transition probability density for the path integral method was built. It is shown that the mentioned solution does not result from the Gaussian unit of fBm with precise covariance. An expression for approximation of fBm covariance was found for which solutions are found based on the Gaussian measure of fBm and those found based on the known Fokker–Planck equation match.\",\"PeriodicalId\":37156,\"journal\":{\"name\":\"Mathematical Modeling and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modeling and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/mmc2023.02.445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.02.445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Fractional Brownian motion in financial engineering models
An application of fractional Brownian motion (fBm) is considered in stochastic financial engineering models. For the known Fokker–Planck equation for the fBm case, a solution for transition probability density for the path integral method was built. It is shown that the mentioned solution does not result from the Gaussian unit of fBm with precise covariance. An expression for approximation of fBm covariance was found for which solutions are found based on the Gaussian measure of fBm and those found based on the known Fokker–Planck equation match.