{"title":"双轴共振风力机叶片全尺寸结构疲劳试验载荷分配优化方法","authors":"Lifang Zhang, Qiang Ma","doi":"10.23977/jemm.2022.070103","DOIUrl":null,"url":null,"abstract":"Wind turbine blade is the key component of wind turbine to realize wind energy capture, so it is necessary to verify the rationality of blade structure design through full-scale structural fatigue test. In order to improve the test accuracy and efficiency, this paper proposes to establish the dynamic analysis model of the multi-degree of freedom system of the tested blade by using the finite beam element to realize the calculation method of the load amplitude of the biaxial fatigue test and integrate the dynamic analysis model and the target load calculation method into the particle swarm optimization algorithm to realize the optimization of the load distribution of the biaxial resonant full-size structure fatigue test. Through the design of a biaxial resonant loading scheme of 2.5MW-52.5m wind turbine blades, the results show that this method can quickly and accurately adjust the optimization parameters such as the position of the exciter and the motion quality of the exciter in the flapwise and edgewise on the premise that the fatigue cumulative damage caused by the test load is not less than the cumulative damage of the target load.","PeriodicalId":32485,"journal":{"name":"Journal of Engineering Mechanics and Machinery","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Load Distribution Optimization Method for Fatigue Test of Full-scale Structure of Biaxial Resonant Wind Turbine Blade\",\"authors\":\"Lifang Zhang, Qiang Ma\",\"doi\":\"10.23977/jemm.2022.070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind turbine blade is the key component of wind turbine to realize wind energy capture, so it is necessary to verify the rationality of blade structure design through full-scale structural fatigue test. In order to improve the test accuracy and efficiency, this paper proposes to establish the dynamic analysis model of the multi-degree of freedom system of the tested blade by using the finite beam element to realize the calculation method of the load amplitude of the biaxial fatigue test and integrate the dynamic analysis model and the target load calculation method into the particle swarm optimization algorithm to realize the optimization of the load distribution of the biaxial resonant full-size structure fatigue test. Through the design of a biaxial resonant loading scheme of 2.5MW-52.5m wind turbine blades, the results show that this method can quickly and accurately adjust the optimization parameters such as the position of the exciter and the motion quality of the exciter in the flapwise and edgewise on the premise that the fatigue cumulative damage caused by the test load is not less than the cumulative damage of the target load.\",\"PeriodicalId\":32485,\"journal\":{\"name\":\"Journal of Engineering Mechanics and Machinery\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mechanics and Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23977/jemm.2022.070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mechanics and Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/jemm.2022.070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Load Distribution Optimization Method for Fatigue Test of Full-scale Structure of Biaxial Resonant Wind Turbine Blade
Wind turbine blade is the key component of wind turbine to realize wind energy capture, so it is necessary to verify the rationality of blade structure design through full-scale structural fatigue test. In order to improve the test accuracy and efficiency, this paper proposes to establish the dynamic analysis model of the multi-degree of freedom system of the tested blade by using the finite beam element to realize the calculation method of the load amplitude of the biaxial fatigue test and integrate the dynamic analysis model and the target load calculation method into the particle swarm optimization algorithm to realize the optimization of the load distribution of the biaxial resonant full-size structure fatigue test. Through the design of a biaxial resonant loading scheme of 2.5MW-52.5m wind turbine blades, the results show that this method can quickly and accurately adjust the optimization parameters such as the position of the exciter and the motion quality of the exciter in the flapwise and edgewise on the premise that the fatigue cumulative damage caused by the test load is not less than the cumulative damage of the target load.