铜对粉末冶金铌钒微合金钢的影响研究

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Science of Sintering Pub Date : 2022-01-01 DOI:10.2298/sos2202153e
M. Erden, A. Erer, Çağrı Odabaşı, S. Gündüz
{"title":"铜对粉末冶金铌钒微合金钢的影响研究","authors":"M. Erden, A. Erer, Çağrı Odabaşı, S. Gündüz","doi":"10.2298/sos2202153e","DOIUrl":null,"url":null,"abstract":"In this work, the effect of Cu content on the microstructures, mechanical properties and electrical conductivity of Nb-V added microalloyed powder metallurgy (PM) steels were investigated. Microalloyed steel samples were pressed at 750 MPa and sintered at 1400oC in argon atmosphere for 1 h. The grain size and phase distribution of the microalloy steels were determined by optical microscope. The precipitates and fracture surface of samples were analyzed with the help of SEM and EDS analyses. Tensile test, hardness test and electrical conductivity measurement were carried out for the Nb-V added microalloyed steel with different Cu content. Results indicated that 10 wt.% Cu added PM microalloyed steel showed the highest values in yield strength (YS) and ultimate tensile strength (UTS). However, when the amount of Cu content increased from 10 to 15 wt.%, YS and UTS decreased. Elongation also tends to decrease with increasing Cu content. Although the electrical conductivity in general increased with the addition of Cu, a decrease in some conductivity was observed in the addition of 15 wt.% Cu.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The investigation of the effect of cu addition on the Nb-V microalloyed steel produced by powder metallurgy\",\"authors\":\"M. Erden, A. Erer, Çağrı Odabaşı, S. Gündüz\",\"doi\":\"10.2298/sos2202153e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the effect of Cu content on the microstructures, mechanical properties and electrical conductivity of Nb-V added microalloyed powder metallurgy (PM) steels were investigated. Microalloyed steel samples were pressed at 750 MPa and sintered at 1400oC in argon atmosphere for 1 h. The grain size and phase distribution of the microalloy steels were determined by optical microscope. The precipitates and fracture surface of samples were analyzed with the help of SEM and EDS analyses. Tensile test, hardness test and electrical conductivity measurement were carried out for the Nb-V added microalloyed steel with different Cu content. Results indicated that 10 wt.% Cu added PM microalloyed steel showed the highest values in yield strength (YS) and ultimate tensile strength (UTS). However, when the amount of Cu content increased from 10 to 15 wt.%, YS and UTS decreased. Elongation also tends to decrease with increasing Cu content. Although the electrical conductivity in general increased with the addition of Cu, a decrease in some conductivity was observed in the addition of 15 wt.% Cu.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos2202153e\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos2202153e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了Cu含量对添加Nb-V的微合金粉末冶金钢组织、力学性能和电导率的影响。在750 MPa压力下对微合金钢试样进行压制,在1400oC氩气中烧结1 h,用光学显微镜观察微合金钢的晶粒尺寸和相分布。利用扫描电镜(SEM)和能谱仪(EDS)分析了试样的析出相和断口形貌。对添加不同Cu含量的Nb-V微合金钢进行了拉伸试验、硬度试验和电导率测定。结果表明,添加10 wt.% Cu的PM微合金钢的屈服强度(YS)和极限抗拉强度(UTS)最高。当Cu含量从10%增加到15%时,YS和UTS下降。延伸率也随Cu含量的增加而降低。虽然电导率总体上随着Cu的加入而增加,但在添加15 wt.% Cu时观察到电导率有所下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The investigation of the effect of cu addition on the Nb-V microalloyed steel produced by powder metallurgy
In this work, the effect of Cu content on the microstructures, mechanical properties and electrical conductivity of Nb-V added microalloyed powder metallurgy (PM) steels were investigated. Microalloyed steel samples were pressed at 750 MPa and sintered at 1400oC in argon atmosphere for 1 h. The grain size and phase distribution of the microalloy steels were determined by optical microscope. The precipitates and fracture surface of samples were analyzed with the help of SEM and EDS analyses. Tensile test, hardness test and electrical conductivity measurement were carried out for the Nb-V added microalloyed steel with different Cu content. Results indicated that 10 wt.% Cu added PM microalloyed steel showed the highest values in yield strength (YS) and ultimate tensile strength (UTS). However, when the amount of Cu content increased from 10 to 15 wt.%, YS and UTS decreased. Elongation also tends to decrease with increasing Cu content. Although the electrical conductivity in general increased with the addition of Cu, a decrease in some conductivity was observed in the addition of 15 wt.% Cu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
期刊最新文献
Effect of glass powder on the friction performance of automotive brake lining materials Production of Ni-Co-bronze composites with different tic composition by hot pressing The influence of boron addition on properties of copper-zirconium alloys Novel basalt-stainless steel composite materials with improved fracture toughness Cavitation resistance of the material PA 3200 GF produced by selective laser sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1