热压法制备不同tic成分的Ni-Co-bronze复合材料

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Science of Sintering Pub Date : 2023-01-01 DOI:10.2298/sos220404007i
A. Imak, M. Kilic, I. Kirik
{"title":"热压法制备不同tic成分的Ni-Co-bronze复合材料","authors":"A. Imak, M. Kilic, I. Kirik","doi":"10.2298/sos220404007i","DOIUrl":null,"url":null,"abstract":"Improving microstructural, mechanical, and thermal properties of Ni-Co-Bronze composites is crucial for various applications. In this study, five Ni-Co-Bronze (CuSn) + XTiC (0, 3, 7, 10, and 15 wt.%) composites were produced by using the hot pressing method. The effect of TiC reinforcement rate on each of their microstructure, wear, hardness, and thermal properties was investigated. Within the scope of microstructure analysis, the scanning electron microscope (SEM), electron dispersive spectrometer (EDS), and XRD analysis were employed. Thermal analyses were carried out for thermal differences between the samples. Furthermore, microhardness, impact, and wear tests were run to estimate mechanical behaviors of Ni-Co Bronze + XTiC composite. Experimental results indicated that TiC rate had an important effect on the microstructure, wear-resistance and microhardness of Ni-Co bronze composite. As the TiC reinforcement rate increased, the hardness of Ni-Co Bronze + XTiC composites varied between 180 HV and 450 HV. Consequently, microstructure analysis revealed that there was a serious interaction between reinforcement and matrix. Wear resistance increased with a TiC (7-10) wt. % rate but decreased at high TiC rates. It was clearly seen that the wear pattern was both oxidative and abrasive.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of Ni-Co-bronze composites with different tic composition by hot pressing\",\"authors\":\"A. Imak, M. Kilic, I. Kirik\",\"doi\":\"10.2298/sos220404007i\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving microstructural, mechanical, and thermal properties of Ni-Co-Bronze composites is crucial for various applications. In this study, five Ni-Co-Bronze (CuSn) + XTiC (0, 3, 7, 10, and 15 wt.%) composites were produced by using the hot pressing method. The effect of TiC reinforcement rate on each of their microstructure, wear, hardness, and thermal properties was investigated. Within the scope of microstructure analysis, the scanning electron microscope (SEM), electron dispersive spectrometer (EDS), and XRD analysis were employed. Thermal analyses were carried out for thermal differences between the samples. Furthermore, microhardness, impact, and wear tests were run to estimate mechanical behaviors of Ni-Co Bronze + XTiC composite. Experimental results indicated that TiC rate had an important effect on the microstructure, wear-resistance and microhardness of Ni-Co bronze composite. As the TiC reinforcement rate increased, the hardness of Ni-Co Bronze + XTiC composites varied between 180 HV and 450 HV. Consequently, microstructure analysis revealed that there was a serious interaction between reinforcement and matrix. Wear resistance increased with a TiC (7-10) wt. % rate but decreased at high TiC rates. It was clearly seen that the wear pattern was both oxidative and abrasive.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos220404007i\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos220404007i","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

改善Ni-Co-Bronze复合材料的显微组织、机械性能和热性能对各种应用至关重要。采用热压法制备了5种Ni-Co-Bronze (CuSn) + XTiC(分别为0、3、7、10和15 wt.%)复合材料。研究了TiC增强率对复合材料显微组织、磨损、硬度和热性能的影响。在微观结构分析范围内,采用扫描电镜(SEM)、电子色散光谱仪(EDS)和XRD分析。对样品之间的热差进行了热分析。此外,通过显微硬度、冲击和磨损测试来评估Ni-Co青铜+ XTiC复合材料的力学行为。实验结果表明,TiC含量对Ni-Co青铜复合材料的显微组织、耐磨性和显微硬度有重要影响。随着TiC增强率的增加,Ni-Co Bronze + XTiC复合材料的硬度在180 ~ 450 HV之间变化。因此,微观结构分析表明,增强体与基体之间存在严重的相互作用。耐磨性随着TiC (7-10) wt. %的增加而增加,但在高TiC含量下下降。可以清楚地看到,磨损模式是氧化和磨蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production of Ni-Co-bronze composites with different tic composition by hot pressing
Improving microstructural, mechanical, and thermal properties of Ni-Co-Bronze composites is crucial for various applications. In this study, five Ni-Co-Bronze (CuSn) + XTiC (0, 3, 7, 10, and 15 wt.%) composites were produced by using the hot pressing method. The effect of TiC reinforcement rate on each of their microstructure, wear, hardness, and thermal properties was investigated. Within the scope of microstructure analysis, the scanning electron microscope (SEM), electron dispersive spectrometer (EDS), and XRD analysis were employed. Thermal analyses were carried out for thermal differences between the samples. Furthermore, microhardness, impact, and wear tests were run to estimate mechanical behaviors of Ni-Co Bronze + XTiC composite. Experimental results indicated that TiC rate had an important effect on the microstructure, wear-resistance and microhardness of Ni-Co bronze composite. As the TiC reinforcement rate increased, the hardness of Ni-Co Bronze + XTiC composites varied between 180 HV and 450 HV. Consequently, microstructure analysis revealed that there was a serious interaction between reinforcement and matrix. Wear resistance increased with a TiC (7-10) wt. % rate but decreased at high TiC rates. It was clearly seen that the wear pattern was both oxidative and abrasive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
期刊最新文献
Effect of glass powder on the friction performance of automotive brake lining materials Production of Ni-Co-bronze composites with different tic composition by hot pressing The influence of boron addition on properties of copper-zirconium alloys Novel basalt-stainless steel composite materials with improved fracture toughness Cavitation resistance of the material PA 3200 GF produced by selective laser sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1