J. Sánchez-Cuevas, G. Rosas, O. Navarro, C. Mercado-Zúñiga, L. Bretado-Aragón, F. Reynoso-Marín, J. Zárate-Medina
{"title":"碳纳米管增强l- 10mg合金的粉末冶金及硬度","authors":"J. Sánchez-Cuevas, G. Rosas, O. Navarro, C. Mercado-Zúñiga, L. Bretado-Aragón, F. Reynoso-Marín, J. Zárate-Medina","doi":"10.2298/sos2204387s","DOIUrl":null,"url":null,"abstract":"In this work, the multi-walled carbon nanotubes (MWCNTs) were purified with an acid treatment and subsequently dispersed using ultrasound and a nonionic surfactant solution of ethoxylated lauric alcohol 7 moles of ethylene oxide (E7E). Then, carbon nanotubes (CNTs) were used as a reinforcement phase (0.4 wt.% and 0.8 wt.%) in the Al- 10Mg alloy. The high-energy ball milling was employed for the nanocomposites processing, and the resulting powders consolidate by uniaxial pressure. Measurements of Vickers microhardness, nanohardness, displacement, and Young's modulus were carried out on the compacts. The samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy (RS). Good dispersion of MWCNTs was achieved using 0.5 mg/ml of the E7E surfactant. The CNTs were dispersed in the Al-10Mg matrix using 0.25 h of milling. After powders compaction, the Al-10Mg/0.4MWCNTs nanocomposite presented a microhardness of 190 HV, nanohardness of 3.5 GPa, and Young's modulus 116 GPa.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"595 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powder metallurgy and hardness of the Ll-10Mg alloy reinforced with carbon nanotubes\",\"authors\":\"J. Sánchez-Cuevas, G. Rosas, O. Navarro, C. Mercado-Zúñiga, L. Bretado-Aragón, F. Reynoso-Marín, J. Zárate-Medina\",\"doi\":\"10.2298/sos2204387s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the multi-walled carbon nanotubes (MWCNTs) were purified with an acid treatment and subsequently dispersed using ultrasound and a nonionic surfactant solution of ethoxylated lauric alcohol 7 moles of ethylene oxide (E7E). Then, carbon nanotubes (CNTs) were used as a reinforcement phase (0.4 wt.% and 0.8 wt.%) in the Al- 10Mg alloy. The high-energy ball milling was employed for the nanocomposites processing, and the resulting powders consolidate by uniaxial pressure. Measurements of Vickers microhardness, nanohardness, displacement, and Young's modulus were carried out on the compacts. The samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy (RS). Good dispersion of MWCNTs was achieved using 0.5 mg/ml of the E7E surfactant. The CNTs were dispersed in the Al-10Mg matrix using 0.25 h of milling. After powders compaction, the Al-10Mg/0.4MWCNTs nanocomposite presented a microhardness of 190 HV, nanohardness of 3.5 GPa, and Young's modulus 116 GPa.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"595 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos2204387s\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos2204387s","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Powder metallurgy and hardness of the Ll-10Mg alloy reinforced with carbon nanotubes
In this work, the multi-walled carbon nanotubes (MWCNTs) were purified with an acid treatment and subsequently dispersed using ultrasound and a nonionic surfactant solution of ethoxylated lauric alcohol 7 moles of ethylene oxide (E7E). Then, carbon nanotubes (CNTs) were used as a reinforcement phase (0.4 wt.% and 0.8 wt.%) in the Al- 10Mg alloy. The high-energy ball milling was employed for the nanocomposites processing, and the resulting powders consolidate by uniaxial pressure. Measurements of Vickers microhardness, nanohardness, displacement, and Young's modulus were carried out on the compacts. The samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy (RS). Good dispersion of MWCNTs was achieved using 0.5 mg/ml of the E7E surfactant. The CNTs were dispersed in the Al-10Mg matrix using 0.25 h of milling. After powders compaction, the Al-10Mg/0.4MWCNTs nanocomposite presented a microhardness of 190 HV, nanohardness of 3.5 GPa, and Young's modulus 116 GPa.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.