干式机械铣削法对MgB2陶瓷成形的改进

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Science of Sintering Pub Date : 2023-01-01 DOI:10.2298/sos2301081y
M. Hasbi, S. Chandra, Amira Fitriani, L. Suhaimi, S. Yudanto
{"title":"干式机械铣削法对MgB2陶瓷成形的改进","authors":"M. Hasbi, S. Chandra, Amira Fitriani, L. Suhaimi, S. Yudanto","doi":"10.2298/sos2301081y","DOIUrl":null,"url":null,"abstract":"The development of the MgB2 manufacturing process to increase current density is an important issue to study. In this work, the MgB2 ceramics were manufactured by using the solid-state technique. To study the influence of dry milling on the formation of the MgB2 ceramics and grain size, variations in ball to powder weight ratio (BPR) and sintering temperature were used as control parameters. Magnesium and boron powder with stoichiometric ratio 2:1 was weighed and milled for 2 h. The milled powder was compacted and sintered at 1023 K and 1123 K for 2 h. By XRD and SEM analysis, we confirmed that the BPR ratio increased magnesium reactivity in MgB2 ceramics formation and refined the grain size. The MgB2 phase of 88.21% was obtained in the sample sintered at temperature of 1123 K and BPR=2:1. To determine the critical temperature of MgB2, we select the sample with the smallest impurities phase to measure its electrical property. The critical onset temperature (Tc-onset) for the selected sample is 40.56 K (?Tc = 0.4 K).","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvements in the MgB2 ceramics formation by using a dry mechanical milling method\",\"authors\":\"M. Hasbi, S. Chandra, Amira Fitriani, L. Suhaimi, S. Yudanto\",\"doi\":\"10.2298/sos2301081y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of the MgB2 manufacturing process to increase current density is an important issue to study. In this work, the MgB2 ceramics were manufactured by using the solid-state technique. To study the influence of dry milling on the formation of the MgB2 ceramics and grain size, variations in ball to powder weight ratio (BPR) and sintering temperature were used as control parameters. Magnesium and boron powder with stoichiometric ratio 2:1 was weighed and milled for 2 h. The milled powder was compacted and sintered at 1023 K and 1123 K for 2 h. By XRD and SEM analysis, we confirmed that the BPR ratio increased magnesium reactivity in MgB2 ceramics formation and refined the grain size. The MgB2 phase of 88.21% was obtained in the sample sintered at temperature of 1123 K and BPR=2:1. To determine the critical temperature of MgB2, we select the sample with the smallest impurities phase to measure its electrical property. The critical onset temperature (Tc-onset) for the selected sample is 40.56 K (?Tc = 0.4 K).\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos2301081y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos2301081y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

开发提高电流密度的MgB2制造工艺是一个重要的研究课题。本文采用固态技术制备了MgB2陶瓷。为了研究干磨对MgB2陶瓷形成和晶粒尺寸的影响,以球粉比(BPR)和烧结温度的变化为控制参数。将化学计量比为2:1的镁硼粉称重,研磨2 h后,在1023 K和1123 K下进行压实和烧结2 h。通过XRD和SEM分析,证实BPR比提高了镁在MgB2陶瓷中的反应活性,细化了晶粒尺寸。在1123 K、BPR=2:1的烧结条件下,试样的MgB2相含量为88.21%。为了确定MgB2的临界温度,我们选择了杂质相最小的样品来测量其电学性能。所选样品的临界起始温度为40.56 K (?Tc = 0.4 K)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvements in the MgB2 ceramics formation by using a dry mechanical milling method
The development of the MgB2 manufacturing process to increase current density is an important issue to study. In this work, the MgB2 ceramics were manufactured by using the solid-state technique. To study the influence of dry milling on the formation of the MgB2 ceramics and grain size, variations in ball to powder weight ratio (BPR) and sintering temperature were used as control parameters. Magnesium and boron powder with stoichiometric ratio 2:1 was weighed and milled for 2 h. The milled powder was compacted and sintered at 1023 K and 1123 K for 2 h. By XRD and SEM analysis, we confirmed that the BPR ratio increased magnesium reactivity in MgB2 ceramics formation and refined the grain size. The MgB2 phase of 88.21% was obtained in the sample sintered at temperature of 1123 K and BPR=2:1. To determine the critical temperature of MgB2, we select the sample with the smallest impurities phase to measure its electrical property. The critical onset temperature (Tc-onset) for the selected sample is 40.56 K (?Tc = 0.4 K).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
期刊最新文献
Effect of glass powder on the friction performance of automotive brake lining materials Production of Ni-Co-bronze composites with different tic composition by hot pressing The influence of boron addition on properties of copper-zirconium alloys Novel basalt-stainless steel composite materials with improved fracture toughness Cavitation resistance of the material PA 3200 GF produced by selective laser sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1