{"title":"不锈钢护套二硼化镁超导体线的制造","authors":"S. Yudanto, Ahmad Affandi, Azwar Manaf","doi":"10.2298/sos230505047y","DOIUrl":null,"url":null,"abstract":"The Powder in Tube (PIT) method was utilized to manufacture the MgB2-based monofilament wire. The ground powders of Mg and B were filled in the stainless-steel tube and went through a cold-rolling process. In order to avoid oxidation, the wire was cut and packed into the stainless-steel tube before sintering at various temperatures (873 K, 973 K, and 1073 K). We offer this heating process in a tube as a method that was both practical and efficient. The formation of the MgB2 phase was analyzed using an X-ray diffractometer post-sintering. At the sintering temperature of 973 K, the MgB2 phase was formed which contained small amounts of magnesium oxide. The sample sintered at 973 K showed superconducting properties, with a critical temperature zero (Tc-zero) and onset (Tc-onset) of 34.09 K and 41.33 K, respectively. A large gap between Tc-onset and Tc-zero was indicated by the insufficient fraction of the MgB2 phase that formed. However, MgB2-based superconducting wire was successfully manufactured in the required tube utilizing a vacuum-free heating process and only a small amount of magnesium oxide.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manufacturing of the stainless-steel sheathed magnesium diboride superconductor wire\",\"authors\":\"S. Yudanto, Ahmad Affandi, Azwar Manaf\",\"doi\":\"10.2298/sos230505047y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Powder in Tube (PIT) method was utilized to manufacture the MgB2-based monofilament wire. The ground powders of Mg and B were filled in the stainless-steel tube and went through a cold-rolling process. In order to avoid oxidation, the wire was cut and packed into the stainless-steel tube before sintering at various temperatures (873 K, 973 K, and 1073 K). We offer this heating process in a tube as a method that was both practical and efficient. The formation of the MgB2 phase was analyzed using an X-ray diffractometer post-sintering. At the sintering temperature of 973 K, the MgB2 phase was formed which contained small amounts of magnesium oxide. The sample sintered at 973 K showed superconducting properties, with a critical temperature zero (Tc-zero) and onset (Tc-onset) of 34.09 K and 41.33 K, respectively. A large gap between Tc-onset and Tc-zero was indicated by the insufficient fraction of the MgB2 phase that formed. However, MgB2-based superconducting wire was successfully manufactured in the required tube utilizing a vacuum-free heating process and only a small amount of magnesium oxide.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos230505047y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos230505047y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Manufacturing of the stainless-steel sheathed magnesium diboride superconductor wire
The Powder in Tube (PIT) method was utilized to manufacture the MgB2-based monofilament wire. The ground powders of Mg and B were filled in the stainless-steel tube and went through a cold-rolling process. In order to avoid oxidation, the wire was cut and packed into the stainless-steel tube before sintering at various temperatures (873 K, 973 K, and 1073 K). We offer this heating process in a tube as a method that was both practical and efficient. The formation of the MgB2 phase was analyzed using an X-ray diffractometer post-sintering. At the sintering temperature of 973 K, the MgB2 phase was formed which contained small amounts of magnesium oxide. The sample sintered at 973 K showed superconducting properties, with a critical temperature zero (Tc-zero) and onset (Tc-onset) of 34.09 K and 41.33 K, respectively. A large gap between Tc-onset and Tc-zero was indicated by the insufficient fraction of the MgB2 phase that formed. However, MgB2-based superconducting wire was successfully manufactured in the required tube utilizing a vacuum-free heating process and only a small amount of magnesium oxide.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.