G. Stevanović, N. Jović-Jovičić, A. Popovič, B. Dojčinović, A. Milutinović-Nikolić, P. Banković, M. Ajdukovic
{"title":"钴负载壳聚糖衍生的碳蒙脱石催化剂在Oxone®诱导染料降解","authors":"G. Stevanović, N. Jović-Jovičić, A. Popovič, B. Dojčinović, A. Milutinović-Nikolić, P. Banković, M. Ajdukovic","doi":"10.2298/sos230427037s","DOIUrl":null,"url":null,"abstract":"Catalytic degradation of tartrazine in the presence of Oxone? activated by a catalyst constituted of cobalt supported on a nanocomposite of smectite with chitosan-derived carbon was investigated. The catalyst was synthesized using cobalt impregnation followed by carbonization at 773 K in an inert atmosphere. The synthesized catalyst was previously fully characterized using appropriate characterization methods, including XRPD, XPS, FTIR, HR-TEM, and low-temperature N2-physisorption analysis. The catalytic experiments were performed by varying different experimental parameters (dye concentration, Oxone? concentration, temperature, and initial pH of the reaction solution). The kinetic and thermodynamic parameters were estimated from the experimental results. The kinetics data showed the best fit with the pseudo-first-order kinetics model. The activation energy of the investigated degradation process was calculated according to the Arrhenius equation. The catalyst showed excellent performance at low temperatures even at 298 K, and in the wide range of pH values.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt supported chitosan-derived carbon-smectite catalyst in Oxone® induced dye degradation\",\"authors\":\"G. Stevanović, N. Jović-Jovičić, A. Popovič, B. Dojčinović, A. Milutinović-Nikolić, P. Banković, M. Ajdukovic\",\"doi\":\"10.2298/sos230427037s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catalytic degradation of tartrazine in the presence of Oxone? activated by a catalyst constituted of cobalt supported on a nanocomposite of smectite with chitosan-derived carbon was investigated. The catalyst was synthesized using cobalt impregnation followed by carbonization at 773 K in an inert atmosphere. The synthesized catalyst was previously fully characterized using appropriate characterization methods, including XRPD, XPS, FTIR, HR-TEM, and low-temperature N2-physisorption analysis. The catalytic experiments were performed by varying different experimental parameters (dye concentration, Oxone? concentration, temperature, and initial pH of the reaction solution). The kinetic and thermodynamic parameters were estimated from the experimental results. The kinetics data showed the best fit with the pseudo-first-order kinetics model. The activation energy of the investigated degradation process was calculated according to the Arrhenius equation. The catalyst showed excellent performance at low temperatures even at 298 K, and in the wide range of pH values.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos230427037s\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos230427037s","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Cobalt supported chitosan-derived carbon-smectite catalyst in Oxone® induced dye degradation
Catalytic degradation of tartrazine in the presence of Oxone? activated by a catalyst constituted of cobalt supported on a nanocomposite of smectite with chitosan-derived carbon was investigated. The catalyst was synthesized using cobalt impregnation followed by carbonization at 773 K in an inert atmosphere. The synthesized catalyst was previously fully characterized using appropriate characterization methods, including XRPD, XPS, FTIR, HR-TEM, and low-temperature N2-physisorption analysis. The catalytic experiments were performed by varying different experimental parameters (dye concentration, Oxone? concentration, temperature, and initial pH of the reaction solution). The kinetic and thermodynamic parameters were estimated from the experimental results. The kinetics data showed the best fit with the pseudo-first-order kinetics model. The activation energy of the investigated degradation process was calculated according to the Arrhenius equation. The catalyst showed excellent performance at low temperatures even at 298 K, and in the wide range of pH values.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.