{"title":"热轧工艺对粉末冶金Mo-Ni合金钢力学性能、耐蚀性和显微组织的影响","authors":"Rajab Elkilani, H. Çuğ, Akif Erden","doi":"10.2298/sos230625040e","DOIUrl":null,"url":null,"abstract":"This study examined the effects of hot rolling on the microstructure, tensile strength, and corrosion behaviors of three different alloy steels made by powder metallurgy: Fe-0.55C, Fe-0.55C-3Mo, and Fe-0.55C-3Mo-10Ni. 700 MPa pressure was applied to press the particles. The cold pressed samples were sintered in a mixed-gas atmosphere (90% nitrogen, 10% hydrogen) at 5?C/min up to 1400?C for 2 hours. Then, the produced steels were hot rolled with a deformation rate of 80%. The microstructures show that deformed Mo and Mo-Ni steels have finer microstructures, better mechanical properties than undeformed Mo and Mo-Ni steels, and MoC, MoN, or MoC(N) was formed in the Mo-Ni steels. The highest mechanical properties were obtained in rolled steel samples containing Mo-Ni, followed by rolled Mo steel and rolled carbon steel samples, and then unrolled samples. Additionally, Tafel curve analysis demonstrated that alloy corrosion resistance rose as Ni concentration increased. It has also been observed that the hot rolling process improves corrosion resistance. The increase in the density value with the rolling process emerged as the best supporter of corrosion resistance.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of hot rolling process on mechanical properties, corrosion resistance, and microstructures of Mo-Ni alloyed steels produced by powder metallurgy\",\"authors\":\"Rajab Elkilani, H. Çuğ, Akif Erden\",\"doi\":\"10.2298/sos230625040e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the effects of hot rolling on the microstructure, tensile strength, and corrosion behaviors of three different alloy steels made by powder metallurgy: Fe-0.55C, Fe-0.55C-3Mo, and Fe-0.55C-3Mo-10Ni. 700 MPa pressure was applied to press the particles. The cold pressed samples were sintered in a mixed-gas atmosphere (90% nitrogen, 10% hydrogen) at 5?C/min up to 1400?C for 2 hours. Then, the produced steels were hot rolled with a deformation rate of 80%. The microstructures show that deformed Mo and Mo-Ni steels have finer microstructures, better mechanical properties than undeformed Mo and Mo-Ni steels, and MoC, MoN, or MoC(N) was formed in the Mo-Ni steels. The highest mechanical properties were obtained in rolled steel samples containing Mo-Ni, followed by rolled Mo steel and rolled carbon steel samples, and then unrolled samples. Additionally, Tafel curve analysis demonstrated that alloy corrosion resistance rose as Ni concentration increased. It has also been observed that the hot rolling process improves corrosion resistance. The increase in the density value with the rolling process emerged as the best supporter of corrosion resistance.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos230625040e\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos230625040e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
The effects of hot rolling process on mechanical properties, corrosion resistance, and microstructures of Mo-Ni alloyed steels produced by powder metallurgy
This study examined the effects of hot rolling on the microstructure, tensile strength, and corrosion behaviors of three different alloy steels made by powder metallurgy: Fe-0.55C, Fe-0.55C-3Mo, and Fe-0.55C-3Mo-10Ni. 700 MPa pressure was applied to press the particles. The cold pressed samples were sintered in a mixed-gas atmosphere (90% nitrogen, 10% hydrogen) at 5?C/min up to 1400?C for 2 hours. Then, the produced steels were hot rolled with a deformation rate of 80%. The microstructures show that deformed Mo and Mo-Ni steels have finer microstructures, better mechanical properties than undeformed Mo and Mo-Ni steels, and MoC, MoN, or MoC(N) was formed in the Mo-Ni steels. The highest mechanical properties were obtained in rolled steel samples containing Mo-Ni, followed by rolled Mo steel and rolled carbon steel samples, and then unrolled samples. Additionally, Tafel curve analysis demonstrated that alloy corrosion resistance rose as Ni concentration increased. It has also been observed that the hot rolling process improves corrosion resistance. The increase in the density value with the rolling process emerged as the best supporter of corrosion resistance.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.