{"title":"用于盲图像质量评价的FP-Nets","authors":"Philipp Grüning, E. Barth","doi":"10.2352/J.PERCEPT.IMAGING.2021.4.1.010402","DOIUrl":null,"url":null,"abstract":"Abstract Feature-Product networks (FP-nets) are a novel deep-network architecture inspired by principles of biological vision. These networks contain the so-called FP-blocks that learn two different filters for each input feature map, the outputs of which are then multiplied. Such an architecture is inspired by models of end-stopped neurons, which are common in cortical areas V1 and especially in V2. The authors here use FP-nets on three image quality assessment (IQA) benchmarks for blind IQA. They show that by using FP-nets, they can obtain networks that deliver state-of-the-art performance while being significantly more compact than competing models. A further improvement that they obtain is due to a simple attention mechanism. The good results that they report may be related to the fact that they employ bio-inspired design principles.","PeriodicalId":73895,"journal":{"name":"Journal of perceptual imaging","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FP-Nets for Blind Image Quality Assessment\",\"authors\":\"Philipp Grüning, E. Barth\",\"doi\":\"10.2352/J.PERCEPT.IMAGING.2021.4.1.010402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Feature-Product networks (FP-nets) are a novel deep-network architecture inspired by principles of biological vision. These networks contain the so-called FP-blocks that learn two different filters for each input feature map, the outputs of which are then multiplied. Such an architecture is inspired by models of end-stopped neurons, which are common in cortical areas V1 and especially in V2. The authors here use FP-nets on three image quality assessment (IQA) benchmarks for blind IQA. They show that by using FP-nets, they can obtain networks that deliver state-of-the-art performance while being significantly more compact than competing models. A further improvement that they obtain is due to a simple attention mechanism. The good results that they report may be related to the fact that they employ bio-inspired design principles.\",\"PeriodicalId\":73895,\"journal\":{\"name\":\"Journal of perceptual imaging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of perceptual imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/J.PERCEPT.IMAGING.2021.4.1.010402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of perceptual imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/J.PERCEPT.IMAGING.2021.4.1.010402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Feature-Product networks (FP-nets) are a novel deep-network architecture inspired by principles of biological vision. These networks contain the so-called FP-blocks that learn two different filters for each input feature map, the outputs of which are then multiplied. Such an architecture is inspired by models of end-stopped neurons, which are common in cortical areas V1 and especially in V2. The authors here use FP-nets on three image quality assessment (IQA) benchmarks for blind IQA. They show that by using FP-nets, they can obtain networks that deliver state-of-the-art performance while being significantly more compact than competing models. A further improvement that they obtain is due to a simple attention mechanism. The good results that they report may be related to the fact that they employ bio-inspired design principles.