鱼类 T 细胞的全面活化和功能需要第一刺激信号和辅助刺激信号的协作。

IF 4 1区 生物学 Q1 ZOOLOGY Zoological Research Pub Date : 2024-01-18 DOI:10.24272/j.issn.2095-8137.2023.053
Wei Liang, Kang Li, Haiyou Gao, Kunming Li, Jiansong Zhang, Qian Zhang, Xinying Jiao, Jialong Yang, Xiumei Wei
{"title":"鱼类 T 细胞的全面活化和功能需要第一刺激信号和辅助刺激信号的协作。","authors":"Wei Liang, Kang Li, Haiyou Gao, Kunming Li, Jiansong Zhang, Qian Zhang, Xinying Jiao, Jialong Yang, Xiumei Wei","doi":"10.24272/j.issn.2095-8137.2023.053","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian T-cell responses require synergism between the first signal and co-stimulatory signal. However, whether and how dual signaling regulates the T-cell response in early vertebrates remains unknown. In the present study, we discovered that the Nile tilapia ( <i>Oreochromis</i> <i>niloticus</i>) encodes key components of the LAT signalosome, namely, LAT, ITK, GRB2, VAV1, SLP-76, GADS, and PLC-γ1. These components are evolutionarily conserved, and CD3ε mAb-induced T-cell activation markedly increased their expression. Additionally, at least ITK, GRB2, and VAV1 were found to interact with LAT for signalosome formation. Downstream of the first signal, the NF-κB, MAPK/ERK, and PI3K-AKT pathways were activated upon CD3ε mAb stimulation. Furthermore, treatment of lymphocytes with CD28 mAbs triggered the AKT-mTORC1 pathway downstream of the co-stimulatory signal. Combined CD3ε and CD28 mAb stimulation enhanced ERK1/2 and S6 phosphorylation and elevated NFAT1, c-Fos, IL-2, CD122, and CD44 expression, thereby signifying T-cell activation. Moreover, rather than relying on the first or co-stimulatory signal alone, both signals were required for T-cell proliferation. Full T-cell activation was accompanied by marked apoptosis and cytotoxic responses. These findings suggest that tilapia relies on dual signaling to maintain an optimal T-cell response, providing a novel perspective for understanding the evolution of the adaptive immune system.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"1 1","pages":"13-24"},"PeriodicalIF":4.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839663/pdf/","citationCount":"0","resultStr":"{\"title\":\"Full T-cell activation and function in teleosts require collaboration of first and co-stimulatory signals.\",\"authors\":\"Wei Liang, Kang Li, Haiyou Gao, Kunming Li, Jiansong Zhang, Qian Zhang, Xinying Jiao, Jialong Yang, Xiumei Wei\",\"doi\":\"10.24272/j.issn.2095-8137.2023.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammalian T-cell responses require synergism between the first signal and co-stimulatory signal. However, whether and how dual signaling regulates the T-cell response in early vertebrates remains unknown. In the present study, we discovered that the Nile tilapia ( <i>Oreochromis</i> <i>niloticus</i>) encodes key components of the LAT signalosome, namely, LAT, ITK, GRB2, VAV1, SLP-76, GADS, and PLC-γ1. These components are evolutionarily conserved, and CD3ε mAb-induced T-cell activation markedly increased their expression. Additionally, at least ITK, GRB2, and VAV1 were found to interact with LAT for signalosome formation. Downstream of the first signal, the NF-κB, MAPK/ERK, and PI3K-AKT pathways were activated upon CD3ε mAb stimulation. Furthermore, treatment of lymphocytes with CD28 mAbs triggered the AKT-mTORC1 pathway downstream of the co-stimulatory signal. Combined CD3ε and CD28 mAb stimulation enhanced ERK1/2 and S6 phosphorylation and elevated NFAT1, c-Fos, IL-2, CD122, and CD44 expression, thereby signifying T-cell activation. Moreover, rather than relying on the first or co-stimulatory signal alone, both signals were required for T-cell proliferation. Full T-cell activation was accompanied by marked apoptosis and cytotoxic responses. These findings suggest that tilapia relies on dual signaling to maintain an optimal T-cell response, providing a novel perspective for understanding the evolution of the adaptive immune system.</p>\",\"PeriodicalId\":48636,\"journal\":{\"name\":\"Zoological Research\",\"volume\":\"1 1\",\"pages\":\"13-24\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.24272/j.issn.2095-8137.2023.053\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2023.053","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物的 T 细胞反应需要第一信号和辅助刺激信号之间的协同作用。然而,双重信号是否以及如何调节早期脊椎动物的 T 细胞反应仍是未知数。在本研究中,我们发现尼罗罗非鱼(Oreochromis niloticus)编码 LAT 信号体的关键组分,即 LAT、ITK、GRB2、VAV1、SLP-76、GADS 和 PLC-γ1。这些成分在进化上是保守的,CD3ε mAb 诱导的 T 细胞活化明显增加了它们的表达。此外,还发现至少 ITK、GRB2 和 VAV1 与 LAT 相互作用以形成信号体。在第一个信号的下游,NF-κB、MAPK/ERK 和 PI3K-AKT 通路在 CD3ε mAb 刺激下被激活。此外,用 CD28 mAbs 处理淋巴细胞会触发共刺激信号下游的 AKT-mTORC1 通路。CD3ε 和 CD28 mAb 的联合刺激增强了 ERK1/2 和 S6 磷酸化,提高了 NFAT1、c-Fos、IL-2、CD122 和 CD44 的表达,从而标志着 T 细胞的活化。此外,T细胞的增殖并不只依赖于第一刺激信号或协同刺激信号,而是同时需要这两种信号。T 细胞的完全活化伴随着明显的细胞凋亡和细胞毒性反应。这些发现表明,罗非鱼依靠双重信号来维持最佳的 T 细胞反应,为了解适应性免疫系统的进化提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full T-cell activation and function in teleosts require collaboration of first and co-stimulatory signals.

Mammalian T-cell responses require synergism between the first signal and co-stimulatory signal. However, whether and how dual signaling regulates the T-cell response in early vertebrates remains unknown. In the present study, we discovered that the Nile tilapia ( Oreochromis niloticus) encodes key components of the LAT signalosome, namely, LAT, ITK, GRB2, VAV1, SLP-76, GADS, and PLC-γ1. These components are evolutionarily conserved, and CD3ε mAb-induced T-cell activation markedly increased their expression. Additionally, at least ITK, GRB2, and VAV1 were found to interact with LAT for signalosome formation. Downstream of the first signal, the NF-κB, MAPK/ERK, and PI3K-AKT pathways were activated upon CD3ε mAb stimulation. Furthermore, treatment of lymphocytes with CD28 mAbs triggered the AKT-mTORC1 pathway downstream of the co-stimulatory signal. Combined CD3ε and CD28 mAb stimulation enhanced ERK1/2 and S6 phosphorylation and elevated NFAT1, c-Fos, IL-2, CD122, and CD44 expression, thereby signifying T-cell activation. Moreover, rather than relying on the first or co-stimulatory signal alone, both signals were required for T-cell proliferation. Full T-cell activation was accompanied by marked apoptosis and cytotoxic responses. These findings suggest that tilapia relies on dual signaling to maintain an optimal T-cell response, providing a novel perspective for understanding the evolution of the adaptive immune system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
期刊最新文献
IDH2 and GLUD1 depletion arrests embryonic development through an H4K20me3 epigenetic barrier in porcine parthenogenetic embryos. Pancreatic agenesis and altered m6A methylation in the pancreas of PDX1-mutant cynomolgus macaques. Convergent evolution in high-altitude and marine mammals: Molecular adaptations to pulmonary fibrosis and hypoxia. Maternal sleep deprivation disrupts glutamate metabolism in offspring rats. Nature's disguise: Empirical demonstration of dead-leaf masquerade in Kallima butterflies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1