{"title":"时间尺度上四阶差分方程解的渐近性质","authors":"U. Ostaszewska, E. Schmeidel, M. Zdanowicz","doi":"10.2478/tmmp-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract We provide sufficient criteria for the existence of solutions for fourth-order nonlinear dynamic equations on time scales (a(t)xΔ2(t))Δ2=b(t)f(x(t))+c(t), {\\left( {a\\left( t \\right){x^{{\\Delta ^2}}}\\left( t \\right)} \\right)^{{\\Delta ^2}}} = b\\left( t \\right)f\\left( {x\\left( t \\right)} \\right) + c\\left( t \\right), such that for a given function y : 𝕋 → ℝ there exists a solution x : 𝕋 → ℝ to considered equation with asymptotic behaviour x(t)=y(t)+o(1tβ) x\\left( t \\right) = y\\left( t \\right) + o\\left( {{1 \\over {{t^\\beta }}}} \\right) . The presented result is applied to the study of solutions to the classical Euler–Bernoulli beam equation, which means that it covers the case 𝕋 = ℝ.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"84 1","pages":"61 - 76"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Properties of Solutions to Fourth-Order Difference Equations on Time Scales\",\"authors\":\"U. Ostaszewska, E. Schmeidel, M. Zdanowicz\",\"doi\":\"10.2478/tmmp-2023-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We provide sufficient criteria for the existence of solutions for fourth-order nonlinear dynamic equations on time scales (a(t)xΔ2(t))Δ2=b(t)f(x(t))+c(t), {\\\\left( {a\\\\left( t \\\\right){x^{{\\\\Delta ^2}}}\\\\left( t \\\\right)} \\\\right)^{{\\\\Delta ^2}}} = b\\\\left( t \\\\right)f\\\\left( {x\\\\left( t \\\\right)} \\\\right) + c\\\\left( t \\\\right), such that for a given function y : 𝕋 → ℝ there exists a solution x : 𝕋 → ℝ to considered equation with asymptotic behaviour x(t)=y(t)+o(1tβ) x\\\\left( t \\\\right) = y\\\\left( t \\\\right) + o\\\\left( {{1 \\\\over {{t^\\\\beta }}}} \\\\right) . The presented result is applied to the study of solutions to the classical Euler–Bernoulli beam equation, which means that it covers the case 𝕋 = ℝ.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"84 1\",\"pages\":\"61 - 76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Asymptotic Properties of Solutions to Fourth-Order Difference Equations on Time Scales
Abstract We provide sufficient criteria for the existence of solutions for fourth-order nonlinear dynamic equations on time scales (a(t)xΔ2(t))Δ2=b(t)f(x(t))+c(t), {\left( {a\left( t \right){x^{{\Delta ^2}}}\left( t \right)} \right)^{{\Delta ^2}}} = b\left( t \right)f\left( {x\left( t \right)} \right) + c\left( t \right), such that for a given function y : 𝕋 → ℝ there exists a solution x : 𝕋 → ℝ to considered equation with asymptotic behaviour x(t)=y(t)+o(1tβ) x\left( t \right) = y\left( t \right) + o\left( {{1 \over {{t^\beta }}}} \right) . The presented result is applied to the study of solutions to the classical Euler–Bernoulli beam equation, which means that it covers the case 𝕋 = ℝ.