几种水准测量技术在测量中的应用评价

Q4 Earth and Planetary Sciences Geodeziya i Kartografiya Pub Date : 2023-11-06 DOI:10.24425/GAC.2019.128463
A. Pırtı, R. G. Hoşbaş
{"title":"几种水准测量技术在测量中的应用评价","authors":"A. Pırtı, R. G. Hoşbaş","doi":"10.24425/GAC.2019.128463","DOIUrl":null,"url":null,"abstract":"Applications in geodesy and engineering surveying require the determination of the heights of the vertical control points in the national and local networks using different techniques. These techniques can be classified as geometric, trigonometric, barometric and Global Positioning System (GPS) levelling. The aim of this study is to analyse height differences obtained from these three techniques using precise digital level and digital level, total station (trigonometric levelling) and GPS which collects phase and code observations (GPS levelling). The accuracies of these methods are analysed. The results obtained show that the precise digital levelling is more stable and reliable than the other two methods. The results of the three levelling methods agree with each other within a few millimetres. The different levelling methods are compared. Geometric levelling is usually accepted as being more accurate than the other methods. The discrepancy between geometric levelling and short range trigonometric levelling is at the level of 8 millimetres. The accuracy of the short range trigonometric levelling is due the reciprocal and simultaneous observations of the zenith angles and slope distances over relative short distances of 250 m. The difference between the ellipsoidal height differences obtained from the GPS levelling used without geoid and the orthometric height differences obtained from precise geometric levelling is 4 millimetres. The geoid model which is obtained from a fifth order polynomial fit of the project area is good enough in this study. The discrepancy between the precise geometric and GPS levelling (with geoid corrections) is 4 millimetres over 5 km.","PeriodicalId":35691,"journal":{"name":"Geodeziya i Kartografiya","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evaluation of some levelling techniques in surveying application\",\"authors\":\"A. Pırtı, R. G. Hoşbaş\",\"doi\":\"10.24425/GAC.2019.128463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications in geodesy and engineering surveying require the determination of the heights of the vertical control points in the national and local networks using different techniques. These techniques can be classified as geometric, trigonometric, barometric and Global Positioning System (GPS) levelling. The aim of this study is to analyse height differences obtained from these three techniques using precise digital level and digital level, total station (trigonometric levelling) and GPS which collects phase and code observations (GPS levelling). The accuracies of these methods are analysed. The results obtained show that the precise digital levelling is more stable and reliable than the other two methods. The results of the three levelling methods agree with each other within a few millimetres. The different levelling methods are compared. Geometric levelling is usually accepted as being more accurate than the other methods. The discrepancy between geometric levelling and short range trigonometric levelling is at the level of 8 millimetres. The accuracy of the short range trigonometric levelling is due the reciprocal and simultaneous observations of the zenith angles and slope distances over relative short distances of 250 m. The difference between the ellipsoidal height differences obtained from the GPS levelling used without geoid and the orthometric height differences obtained from precise geometric levelling is 4 millimetres. The geoid model which is obtained from a fifth order polynomial fit of the project area is good enough in this study. The discrepancy between the precise geometric and GPS levelling (with geoid corrections) is 4 millimetres over 5 km.\",\"PeriodicalId\":35691,\"journal\":{\"name\":\"Geodeziya i Kartografiya\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodeziya i Kartografiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/GAC.2019.128463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodeziya i Kartografiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/GAC.2019.128463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 7

摘要

在大地测量学和工程测量中的应用需要使用不同的技术确定国家和地方网络中垂直控制点的高度。这些技术可分为几何、三角、气压和全球定位系统(GPS)调平。本研究的目的是分析从这三种技术中获得的高差,使用精确数字水准仪和数字水准仪,全站仪(三角测量)和GPS收集相位和代码观测(GPS测量)。对这些方法的精度进行了分析。结果表明,精确数字调平比其他两种方法稳定可靠。三种找平方法的结果在几毫米以内是一致的。对不同的调平方法进行了比较。几何调平通常被认为比其他方法更精确。几何调平与短距离三角调平的差异在8毫米左右。短距离三角学水准的准确性是由于在相对较短的250米距离内对天顶角和坡距的互反和同时观测。不使用大地水准面而使用GPS水准所获得的椭球高差与精确几何水准所获得的正等高差相差4毫米。采用五阶多项式拟合得到的工程区大地水准面模型在本研究中具有较好的效果。精确几何水准与GPS水准(含大地水准面修正)之间的差异为每5公里4毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of some levelling techniques in surveying application
Applications in geodesy and engineering surveying require the determination of the heights of the vertical control points in the national and local networks using different techniques. These techniques can be classified as geometric, trigonometric, barometric and Global Positioning System (GPS) levelling. The aim of this study is to analyse height differences obtained from these three techniques using precise digital level and digital level, total station (trigonometric levelling) and GPS which collects phase and code observations (GPS levelling). The accuracies of these methods are analysed. The results obtained show that the precise digital levelling is more stable and reliable than the other two methods. The results of the three levelling methods agree with each other within a few millimetres. The different levelling methods are compared. Geometric levelling is usually accepted as being more accurate than the other methods. The discrepancy between geometric levelling and short range trigonometric levelling is at the level of 8 millimetres. The accuracy of the short range trigonometric levelling is due the reciprocal and simultaneous observations of the zenith angles and slope distances over relative short distances of 250 m. The difference between the ellipsoidal height differences obtained from the GPS levelling used without geoid and the orthometric height differences obtained from precise geometric levelling is 4 millimetres. The geoid model which is obtained from a fifth order polynomial fit of the project area is good enough in this study. The discrepancy between the precise geometric and GPS levelling (with geoid corrections) is 4 millimetres over 5 km.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodeziya i Kartografiya
Geodeziya i Kartografiya Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
0.60
自引率
0.00%
发文量
73
期刊最新文献
Research on GNSS positioning and applications in Poland in 2015–2018 Geoinformation analysis of the united territorial communities land use On the reduction of geodetic and gravimetric measurements on technogenic and geodynamic polygons The recommendations for territorial development of land use in the region Site selection for solar power plant in Zaporizhia city (Ukraine)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1