{"title":"基于精确搜索的混合模型双面装配线长度最小化方法","authors":"A. Yadav, P. Verma, S. Agrawal","doi":"10.24425/MPER.2019.131447","DOIUrl":null,"url":null,"abstract":"Received: 5 March 2019 Abstract Accepted: 14 November 2019 In the two-sided mixed-model assembly line, there is a process of installing two single stations in each position left and right of the assembly line with the combining of the product model. The main aim of this paper is to develop a new mathematical model for the mixed model two-sided assembly line balancing (MTALB) generally occurs in plants producing large-sized high-volume products such as buses or trucks. According to the literature review, authors focus on research gap that indicate in MTALB problem, minimize the length of the line play crucial role in industry space optimization.In this paper, the proposed mathematical model is applied to solve benchmark problems of two-sided mixed-model assembly line balancing problem to maximize the workload on each workstation which tends to increase the compactness in the beginning workstations which also helps to minimize the length of the line. Since the problem is well known as np-hard problem benchmark problem is solved using a branch and bound algorithm on lingo 17.0 solver and based on the computational results, station line effectiveness and efficiency that is obtained by reducing the length of the line in mated stations of the assembly line is increased.","PeriodicalId":45454,"journal":{"name":"Management and Production Engineering Review","volume":"10 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing Length in a Mixed Model Two Sided Assembly Line Using Exact Search Method\",\"authors\":\"A. Yadav, P. Verma, S. Agrawal\",\"doi\":\"10.24425/MPER.2019.131447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: 5 March 2019 Abstract Accepted: 14 November 2019 In the two-sided mixed-model assembly line, there is a process of installing two single stations in each position left and right of the assembly line with the combining of the product model. The main aim of this paper is to develop a new mathematical model for the mixed model two-sided assembly line balancing (MTALB) generally occurs in plants producing large-sized high-volume products such as buses or trucks. According to the literature review, authors focus on research gap that indicate in MTALB problem, minimize the length of the line play crucial role in industry space optimization.In this paper, the proposed mathematical model is applied to solve benchmark problems of two-sided mixed-model assembly line balancing problem to maximize the workload on each workstation which tends to increase the compactness in the beginning workstations which also helps to minimize the length of the line. Since the problem is well known as np-hard problem benchmark problem is solved using a branch and bound algorithm on lingo 17.0 solver and based on the computational results, station line effectiveness and efficiency that is obtained by reducing the length of the line in mated stations of the assembly line is increased.\",\"PeriodicalId\":45454,\"journal\":{\"name\":\"Management and Production Engineering Review\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Management and Production Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/MPER.2019.131447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management and Production Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/MPER.2019.131447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Minimizing Length in a Mixed Model Two Sided Assembly Line Using Exact Search Method
Received: 5 March 2019 Abstract Accepted: 14 November 2019 In the two-sided mixed-model assembly line, there is a process of installing two single stations in each position left and right of the assembly line with the combining of the product model. The main aim of this paper is to develop a new mathematical model for the mixed model two-sided assembly line balancing (MTALB) generally occurs in plants producing large-sized high-volume products such as buses or trucks. According to the literature review, authors focus on research gap that indicate in MTALB problem, minimize the length of the line play crucial role in industry space optimization.In this paper, the proposed mathematical model is applied to solve benchmark problems of two-sided mixed-model assembly line balancing problem to maximize the workload on each workstation which tends to increase the compactness in the beginning workstations which also helps to minimize the length of the line. Since the problem is well known as np-hard problem benchmark problem is solved using a branch and bound algorithm on lingo 17.0 solver and based on the computational results, station line effectiveness and efficiency that is obtained by reducing the length of the line in mated stations of the assembly line is increased.
期刊介绍:
Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management.