Yafei Wang, Rui Li, Chenlong Li, Yanxiao Zhao, Xuehua Li
{"title":"多符号传输的抗串扰噪声性能分析及联合串扰抑制方法","authors":"Yafei Wang, Rui Li, Chenlong Li, Yanxiao Zhao, Xuehua Li","doi":"10.2528/pierl21102701","DOIUrl":null,"url":null,"abstract":"|Crosstalk between interconnected lines is considered from two perspectives in this study. From a physical space perspective, the four transmission lines are reduced to two transmission lines. Meanwhile, the replacement of signal transmission of four-channels 2PAM (Pulse Amplitude Modulation) with signal transmission of two-channels 4PAM can reduce the quantity of transmission line and increase the space between the transmission lines. Thus, it can reduce the crosstalk. Under the same signal-to-noise ratio (SNR), the change in symbol error rate (SER) after signals of four-channels 2PAM are changed to those of two-channels 4PAM is given. Results show that the latter has an advantage in anti-crosstalk compared with the former in terms of the in(cid:13)uence of crosstalk on SER. From the signal space perspective, applying signal linear combination transformation can convert the multiplexing signals in the interconnects into orthogonal mode. This process can cancel the crosstalk. In this study, the two methods are combined to save wiring while reducing crosstalk. ADS simulation results show that the eye pattern of 4 PAM signal recovers well by saving half the number of transmission lines.","PeriodicalId":20579,"journal":{"name":"Progress in Electromagnetics Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANTI-CROSSTALK NOISE PERFORMANCE ANALYSIS OF MULTI-SYMBOL TRANSMISSION AND JOINT CROSSTALK REDUCTION METHOD\",\"authors\":\"Yafei Wang, Rui Li, Chenlong Li, Yanxiao Zhao, Xuehua Li\",\"doi\":\"10.2528/pierl21102701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"|Crosstalk between interconnected lines is considered from two perspectives in this study. From a physical space perspective, the four transmission lines are reduced to two transmission lines. Meanwhile, the replacement of signal transmission of four-channels 2PAM (Pulse Amplitude Modulation) with signal transmission of two-channels 4PAM can reduce the quantity of transmission line and increase the space between the transmission lines. Thus, it can reduce the crosstalk. Under the same signal-to-noise ratio (SNR), the change in symbol error rate (SER) after signals of four-channels 2PAM are changed to those of two-channels 4PAM is given. Results show that the latter has an advantage in anti-crosstalk compared with the former in terms of the in(cid:13)uence of crosstalk on SER. From the signal space perspective, applying signal linear combination transformation can convert the multiplexing signals in the interconnects into orthogonal mode. This process can cancel the crosstalk. In this study, the two methods are combined to save wiring while reducing crosstalk. ADS simulation results show that the eye pattern of 4 PAM signal recovers well by saving half the number of transmission lines.\",\"PeriodicalId\":20579,\"journal\":{\"name\":\"Progress in Electromagnetics Research Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/pierl21102701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pierl21102701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
ANTI-CROSSTALK NOISE PERFORMANCE ANALYSIS OF MULTI-SYMBOL TRANSMISSION AND JOINT CROSSTALK REDUCTION METHOD
|Crosstalk between interconnected lines is considered from two perspectives in this study. From a physical space perspective, the four transmission lines are reduced to two transmission lines. Meanwhile, the replacement of signal transmission of four-channels 2PAM (Pulse Amplitude Modulation) with signal transmission of two-channels 4PAM can reduce the quantity of transmission line and increase the space between the transmission lines. Thus, it can reduce the crosstalk. Under the same signal-to-noise ratio (SNR), the change in symbol error rate (SER) after signals of four-channels 2PAM are changed to those of two-channels 4PAM is given. Results show that the latter has an advantage in anti-crosstalk compared with the former in terms of the in(cid:13)uence of crosstalk on SER. From the signal space perspective, applying signal linear combination transformation can convert the multiplexing signals in the interconnects into orthogonal mode. This process can cancel the crosstalk. In this study, the two methods are combined to save wiring while reducing crosstalk. ADS simulation results show that the eye pattern of 4 PAM signal recovers well by saving half the number of transmission lines.