O. Demyanchenko, E. Kobilskaya, V. Lyashenko, T. Nabok
{"title":"轮辐式永磁同步电机热过程的数学模型","authors":"O. Demyanchenko, E. Kobilskaya, V. Lyashenko, T. Nabok","doi":"10.26565/2304-6201-2020-45-05","DOIUrl":null,"url":null,"abstract":"This paper presents an mathematical model for the prediction of temperature field distribution in spoke-type permanent magnet synchronous machines. The mathematical model takes into account radial heat transfer streams; it is presented as a boundary problem in a multilayer non-canonical region with conjugation conditions at the boundaries of the layers, with different thermal physical properties. The entire study area is divided into five types of simple subdomains, including a shaft, an inner fan-shaped magnet, an outer fan-shaped magnet, a slot opening and a slot. Moreover, on the border of the inner and outer fan-shaped magnets in slot opening and a slot, we have an perfect thermal contact. The problem is solved by the finite element method. Using the results of numerical experiments, the model allows you to control the temperature field of the machine, allows you to calculate the temperature distribution in its individual parts.","PeriodicalId":33695,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mathematical model of the thermal process in Spoke-Type Permanent Magnet Synchronous Machines\",\"authors\":\"O. Demyanchenko, E. Kobilskaya, V. Lyashenko, T. Nabok\",\"doi\":\"10.26565/2304-6201-2020-45-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an mathematical model for the prediction of temperature field distribution in spoke-type permanent magnet synchronous machines. The mathematical model takes into account radial heat transfer streams; it is presented as a boundary problem in a multilayer non-canonical region with conjugation conditions at the boundaries of the layers, with different thermal physical properties. The entire study area is divided into five types of simple subdomains, including a shaft, an inner fan-shaped magnet, an outer fan-shaped magnet, a slot opening and a slot. Moreover, on the border of the inner and outer fan-shaped magnets in slot opening and a slot, we have an perfect thermal contact. The problem is solved by the finite element method. Using the results of numerical experiments, the model allows you to control the temperature field of the machine, allows you to calculate the temperature distribution in its individual parts.\",\"PeriodicalId\":33695,\"journal\":{\"name\":\"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2304-6201-2020-45-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2304-6201-2020-45-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mathematical model of the thermal process in Spoke-Type Permanent Magnet Synchronous Machines
This paper presents an mathematical model for the prediction of temperature field distribution in spoke-type permanent magnet synchronous machines. The mathematical model takes into account radial heat transfer streams; it is presented as a boundary problem in a multilayer non-canonical region with conjugation conditions at the boundaries of the layers, with different thermal physical properties. The entire study area is divided into five types of simple subdomains, including a shaft, an inner fan-shaped magnet, an outer fan-shaped magnet, a slot opening and a slot. Moreover, on the border of the inner and outer fan-shaped magnets in slot opening and a slot, we have an perfect thermal contact. The problem is solved by the finite element method. Using the results of numerical experiments, the model allows you to control the temperature field of the machine, allows you to calculate the temperature distribution in its individual parts.