利用线性Boussinesq方程的远场海啸数值模拟。

Q4 Earth and Planetary Sciences Papers in Meteorology and Geophysics Pub Date : 2000-01-01 DOI:10.2467/MRIPAPERS.51.17
Y. Tanioka
{"title":"利用线性Boussinesq方程的远场海啸数值模拟。","authors":"Y. Tanioka","doi":"10.2467/MRIPAPERS.51.17","DOIUrl":null,"url":null,"abstract":"The dispersion effect is not negligible in the numerical simulation of far-field tsunamis propagating through deep oceans. Imamura et al. (1990) introduced a technique in which the discretization error in the finite difference equation of the linear long wave equation was used to approximate the physical dispersion term. The technique is widely accepted to compute trans-Pacific tsunamis caused by great earthquakes (Mw> 8). However, the technique has never been applied to compute tsunamis caused by smaller earthquakes (Mw< 7) because the approximation may break down. In order to compute the tsunami caused by the 1998 Papua New Guinea earthquake (Mw 7.1), we numerically solve the linear Boussinesq equation, which includes the physical dispersion term, using an implicit scheme. For comparison, we also compute the tsunami using Imamura's technique. The comparison of the computed waveforms at the ocean bottom pressure gauge off Boso (BS3-OBP) from the two numerical simulations indicates that the linear Boussinesq equation should be used to simulate the tsunami waveform more accurately, especially the later phase of tsunami waveforms. We also found that the observed tsunami that was originally generated by the 1998 Papua New Guinea earthquake and recorded at BS3-OBP was a ridge wave. The ridge wave was enhanced by the shallow water region around the Izu-Bonin Islands.","PeriodicalId":39821,"journal":{"name":"Papers in Meteorology and Geophysics","volume":"51 1","pages":"17-25"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Numerical simulation of far-field tsunami using the linear Boussinesq equation.\",\"authors\":\"Y. Tanioka\",\"doi\":\"10.2467/MRIPAPERS.51.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dispersion effect is not negligible in the numerical simulation of far-field tsunamis propagating through deep oceans. Imamura et al. (1990) introduced a technique in which the discretization error in the finite difference equation of the linear long wave equation was used to approximate the physical dispersion term. The technique is widely accepted to compute trans-Pacific tsunamis caused by great earthquakes (Mw> 8). However, the technique has never been applied to compute tsunamis caused by smaller earthquakes (Mw< 7) because the approximation may break down. In order to compute the tsunami caused by the 1998 Papua New Guinea earthquake (Mw 7.1), we numerically solve the linear Boussinesq equation, which includes the physical dispersion term, using an implicit scheme. For comparison, we also compute the tsunami using Imamura's technique. The comparison of the computed waveforms at the ocean bottom pressure gauge off Boso (BS3-OBP) from the two numerical simulations indicates that the linear Boussinesq equation should be used to simulate the tsunami waveform more accurately, especially the later phase of tsunami waveforms. We also found that the observed tsunami that was originally generated by the 1998 Papua New Guinea earthquake and recorded at BS3-OBP was a ridge wave. The ridge wave was enhanced by the shallow water region around the Izu-Bonin Islands.\",\"PeriodicalId\":39821,\"journal\":{\"name\":\"Papers in Meteorology and Geophysics\",\"volume\":\"51 1\",\"pages\":\"17-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers in Meteorology and Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2467/MRIPAPERS.51.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Meteorology and Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2467/MRIPAPERS.51.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 11

摘要

在深海远场海啸传播的数值模拟中,频散效应是不可忽略的。Imamura et al.(1990)介绍了一种利用线性长波方程有限差分方程中的离散化误差来近似物理色散项的技术。该技术被广泛用于计算由大地震(Mw bbbb8)引起的跨太平洋海啸。然而,该技术从未被应用于计算由较小地震(Mw< 7)引起的海啸,因为这种近似可能会失效。为了计算1998年巴布亚新几内亚地震(Mw 7.1)引起的海啸,我们使用隐式格式对包含物理色散项的线性Boussinesq方程进行了数值求解。为了比较,我们也用Imamura的方法计算了海啸。两次数值模拟的波索海底压力计(BS3-OBP)计算波形的比较表明,应采用线性Boussinesq方程更准确地模拟海啸波形,特别是海啸波形的后期。我们还发现,观测到的最初由1998年巴布亚新几内亚地震产生并记录在BS3-OBP上的海啸为脊波。伊豆小原群岛周围的浅水区增强了脊波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of far-field tsunami using the linear Boussinesq equation.
The dispersion effect is not negligible in the numerical simulation of far-field tsunamis propagating through deep oceans. Imamura et al. (1990) introduced a technique in which the discretization error in the finite difference equation of the linear long wave equation was used to approximate the physical dispersion term. The technique is widely accepted to compute trans-Pacific tsunamis caused by great earthquakes (Mw> 8). However, the technique has never been applied to compute tsunamis caused by smaller earthquakes (Mw< 7) because the approximation may break down. In order to compute the tsunami caused by the 1998 Papua New Guinea earthquake (Mw 7.1), we numerically solve the linear Boussinesq equation, which includes the physical dispersion term, using an implicit scheme. For comparison, we also compute the tsunami using Imamura's technique. The comparison of the computed waveforms at the ocean bottom pressure gauge off Boso (BS3-OBP) from the two numerical simulations indicates that the linear Boussinesq equation should be used to simulate the tsunami waveform more accurately, especially the later phase of tsunami waveforms. We also found that the observed tsunami that was originally generated by the 1998 Papua New Guinea earthquake and recorded at BS3-OBP was a ridge wave. The ridge wave was enhanced by the shallow water region around the Izu-Bonin Islands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Papers in Meteorology and Geophysics
Papers in Meteorology and Geophysics Earth and Planetary Sciences-Geophysics
自引率
0.00%
发文量
1
期刊最新文献
Estimation of JMA-Magnitude for Slow Tsunami Earthquakes Application of an Objective Detection Method of Long-Term Slow Slip Events using GNSS Data: Detection of Short-Term Slow Slip Events and Estimation of Moment Magnitude of Long-Term Slow Slip Events Deepening and Evolution of a Low over the Sea of Japan in Late August in 2016: Interaction of Midlatitude Flows and Typhoon Lionrock (1610) An improved equation for estimating diurnal atmospheric radiation near the surface in Japan Tropical cyclone forecasts for the Western North Pacific with high-resolution atmosphere and coupled atmosphere-ocean models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1