{"title":"基于支持向量机的日本COVID-19死亡率分析","authors":"K. Tanabe, Takahiro Suzuki","doi":"10.2477/JCCJ.2020-0030","DOIUrl":null,"url":null,"abstract":"To look for factors of the COVID-19 spreading in the whole world currently, an empirical study has been tried by using a multi-regression analysis for mortality rates of 47 prefectures as an objective variable, and various indices as the explanatory variables. A support vector machine method was applied to deal with a nonlinear relationship between objective and explanatory variables, and a sensitivity analysis was applied to search the factors of the COVID-19 mortality. Welfare, urbanization, poverty rate, service industry, and sex ratio were obtained as dangerous factors which increase mortality, while single-person households, meals, and sleep were obtained as defensing factors which decrease mortality. Novel and useful knowledge for prevention measure of the COVID-19 was obtained: three factors of urbanization, service industry, and single-person household relating to the Three Cs contribute largest to the mortality, and two factors of welfare and poverty rate, reflecting the reality' of the poor people also contribute.","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of COVID-19 Mortality in Japan byUsing Support Vector Machine\",\"authors\":\"K. Tanabe, Takahiro Suzuki\",\"doi\":\"10.2477/JCCJ.2020-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To look for factors of the COVID-19 spreading in the whole world currently, an empirical study has been tried by using a multi-regression analysis for mortality rates of 47 prefectures as an objective variable, and various indices as the explanatory variables. A support vector machine method was applied to deal with a nonlinear relationship between objective and explanatory variables, and a sensitivity analysis was applied to search the factors of the COVID-19 mortality. Welfare, urbanization, poverty rate, service industry, and sex ratio were obtained as dangerous factors which increase mortality, while single-person households, meals, and sleep were obtained as defensing factors which decrease mortality. Novel and useful knowledge for prevention measure of the COVID-19 was obtained: three factors of urbanization, service industry, and single-person household relating to the Three Cs contribute largest to the mortality, and two factors of welfare and poverty rate, reflecting the reality' of the poor people also contribute.\",\"PeriodicalId\":41909,\"journal\":{\"name\":\"Journal of Computer Chemistry-Japan\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Chemistry-Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2477/JCCJ.2020-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Chemistry-Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2477/JCCJ.2020-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of COVID-19 Mortality in Japan byUsing Support Vector Machine
To look for factors of the COVID-19 spreading in the whole world currently, an empirical study has been tried by using a multi-regression analysis for mortality rates of 47 prefectures as an objective variable, and various indices as the explanatory variables. A support vector machine method was applied to deal with a nonlinear relationship between objective and explanatory variables, and a sensitivity analysis was applied to search the factors of the COVID-19 mortality. Welfare, urbanization, poverty rate, service industry, and sex ratio were obtained as dangerous factors which increase mortality, while single-person households, meals, and sleep were obtained as defensing factors which decrease mortality. Novel and useful knowledge for prevention measure of the COVID-19 was obtained: three factors of urbanization, service industry, and single-person household relating to the Three Cs contribute largest to the mortality, and two factors of welfare and poverty rate, reflecting the reality' of the poor people also contribute.