教学GLM概念:解释联系

S. T. Skidmore
{"title":"教学GLM概念:解释联系","authors":"S. T. Skidmore","doi":"10.2458/V6I2.18802","DOIUrl":null,"url":null,"abstract":"The purpose of the present paper is to encourage textbook authors, quantitative instructors, curriculum writers, and software developers to move away from the use of isolated apparently disconnected analyses and instead move towards the use of the general linear model as a foundational framework for graduate level statistics training. It is argued that an understanding of modeling, simple linear equations, and commonly used analogous statistical terms will facilitate students understanding of frequently used parametric analyses. Additionally, this holistic approach will equip students with the necessary preparatory skills to understand newer analytical approaches. Three heuristic examples are provided. DOI:10.2458/azu_jmmss_v6i2_skidmore","PeriodicalId":90602,"journal":{"name":"Journal of methods and measurement in the social sciences","volume":"6 1","pages":"42-59"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Teaching GLM Concepts: Explicating the Connections\",\"authors\":\"S. T. Skidmore\",\"doi\":\"10.2458/V6I2.18802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the present paper is to encourage textbook authors, quantitative instructors, curriculum writers, and software developers to move away from the use of isolated apparently disconnected analyses and instead move towards the use of the general linear model as a foundational framework for graduate level statistics training. It is argued that an understanding of modeling, simple linear equations, and commonly used analogous statistical terms will facilitate students understanding of frequently used parametric analyses. Additionally, this holistic approach will equip students with the necessary preparatory skills to understand newer analytical approaches. Three heuristic examples are provided. DOI:10.2458/azu_jmmss_v6i2_skidmore\",\"PeriodicalId\":90602,\"journal\":{\"name\":\"Journal of methods and measurement in the social sciences\",\"volume\":\"6 1\",\"pages\":\"42-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of methods and measurement in the social sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2458/V6I2.18802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of methods and measurement in the social sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2458/V6I2.18802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是鼓励教科书作者、定量讲师、课程编写者和软件开发人员不再使用孤立的、明显不相关的分析,而是转向使用一般线性模型作为研究生水平统计培训的基础框架。本文认为,理解建模、简单线性方程和常用的类似统计术语将有助于学生理解经常使用的参数分析。此外,这种全面的方法将使学生具备必要的准备技能,以理解新的分析方法。提供了三个启发式示例。DOI: 10.2458 / azu_jmmss_v6i2_skidmore
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Teaching GLM Concepts: Explicating the Connections
The purpose of the present paper is to encourage textbook authors, quantitative instructors, curriculum writers, and software developers to move away from the use of isolated apparently disconnected analyses and instead move towards the use of the general linear model as a foundational framework for graduate level statistics training. It is argued that an understanding of modeling, simple linear equations, and commonly used analogous statistical terms will facilitate students understanding of frequently used parametric analyses. Additionally, this holistic approach will equip students with the necessary preparatory skills to understand newer analytical approaches. Three heuristic examples are provided. DOI:10.2458/azu_jmmss_v6i2_skidmore
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
26 weeks
期刊最新文献
Invitation for COVID-19 Submissions Machine Learning Method for High-Dimensional Education Data Comparing human coding to two natural language processing algorithms in aspirations of people affected by Duchenne Muscular Dystrophy The Modern Biased Information Test: Proposing alternatives for implicit measures Binary Classification: An Introductory Machine Learning Tutorial for Social Scientists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1