利用全GLM加强统计学教学

R. Gorsuch
{"title":"利用全GLM加强统计学教学","authors":"R. Gorsuch","doi":"10.2458/V6I2.18803","DOIUrl":null,"url":null,"abstract":"Increased elegance in math and science is by the use of more comprehensive, easier to understand, and easier to use models. Increasing elegance allows courses to cover more material in greater depth. While the GLM is more elegant than the traditional ANOVA / Regression models, it has in practice been just one more topic added to already filled statistics courses and has had little impact on day-to-day statistical analyses. Introduced in the 1960s - 1970s, its impact has been delayed because it has been necessary to produce a new generation that knew the GLM but could also converse with the pre-1970 generation. When considering a possibly more elegant model, the \"full\" GLM includes not only GLM -- and therefore ANOVA and regression -- but also chi square contingency table analyses as well as multivariate analyses, and uses the F as the hypothesized variance divided by the error variance in all cases.  Given advancing technology, the computations are now readily done and typically easier than the traditional ANOVA/Regression programs, allowing more focus on issues ranging from how the information is encapsulated so as to best test the hypotheses (by logs, logits, interactions, polynomials, repeated measures as slope or covariates, etc.) to meta-science and the principles of meta-analysis needed to use research literature. And, as expected, the more elegant full GLM means explicitly GLM software can be easier to learn and use. DOI:10.2458/azu_jmmss_v6i2_gorsuch","PeriodicalId":90602,"journal":{"name":"Journal of methods and measurement in the social sciences","volume":"6 1","pages":"60-69"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancing the Teaching of Statistics by Use of the Full GLM\",\"authors\":\"R. Gorsuch\",\"doi\":\"10.2458/V6I2.18803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased elegance in math and science is by the use of more comprehensive, easier to understand, and easier to use models. Increasing elegance allows courses to cover more material in greater depth. While the GLM is more elegant than the traditional ANOVA / Regression models, it has in practice been just one more topic added to already filled statistics courses and has had little impact on day-to-day statistical analyses. Introduced in the 1960s - 1970s, its impact has been delayed because it has been necessary to produce a new generation that knew the GLM but could also converse with the pre-1970 generation. When considering a possibly more elegant model, the \\\"full\\\" GLM includes not only GLM -- and therefore ANOVA and regression -- but also chi square contingency table analyses as well as multivariate analyses, and uses the F as the hypothesized variance divided by the error variance in all cases.  Given advancing technology, the computations are now readily done and typically easier than the traditional ANOVA/Regression programs, allowing more focus on issues ranging from how the information is encapsulated so as to best test the hypotheses (by logs, logits, interactions, polynomials, repeated measures as slope or covariates, etc.) to meta-science and the principles of meta-analysis needed to use research literature. And, as expected, the more elegant full GLM means explicitly GLM software can be easier to learn and use. DOI:10.2458/azu_jmmss_v6i2_gorsuch\",\"PeriodicalId\":90602,\"journal\":{\"name\":\"Journal of methods and measurement in the social sciences\",\"volume\":\"6 1\",\"pages\":\"60-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of methods and measurement in the social sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2458/V6I2.18803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of methods and measurement in the social sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2458/V6I2.18803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提高数学和科学的优雅是通过使用更全面、更容易理解和更容易使用的模型。不断增加的优雅使课程能够更深入地涵盖更多的材料。虽然GLM比传统的方差分析/回归模型更优雅,但在实践中,它只是在已经很满的统计学课程中添加的一个主题,对日常统计分析几乎没有影响。它在20世纪60年代至70年代推出,其影响被推迟了,因为有必要生产出了解GLM但也能与1970年以前的一代对话的新一代。当考虑一个可能更优雅的模型时,“完整的”GLM不仅包括GLM——因此也包括方差分析和回归——还包括卡方列联表分析以及多变量分析,并使用F作为所有情况下的假设方差除以误差方差。鉴于先进的技术,计算现在很容易完成,通常比传统的方差分析/回归程序更容易,允许更多地关注从如何封装信息以便最好地检验假设(通过日志,logits,相互作用,多项式,重复测量斜率或协变量等)到元科学和使用研究文献所需的元分析原则等问题。而且,正如预期的那样,更优雅的完整GLM意味着明确的GLM软件可以更容易学习和使用。DOI: 10.2458 / azu_jmmss_v6i2_gorsuch
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the Teaching of Statistics by Use of the Full GLM
Increased elegance in math and science is by the use of more comprehensive, easier to understand, and easier to use models. Increasing elegance allows courses to cover more material in greater depth. While the GLM is more elegant than the traditional ANOVA / Regression models, it has in practice been just one more topic added to already filled statistics courses and has had little impact on day-to-day statistical analyses. Introduced in the 1960s - 1970s, its impact has been delayed because it has been necessary to produce a new generation that knew the GLM but could also converse with the pre-1970 generation. When considering a possibly more elegant model, the "full" GLM includes not only GLM -- and therefore ANOVA and regression -- but also chi square contingency table analyses as well as multivariate analyses, and uses the F as the hypothesized variance divided by the error variance in all cases.  Given advancing technology, the computations are now readily done and typically easier than the traditional ANOVA/Regression programs, allowing more focus on issues ranging from how the information is encapsulated so as to best test the hypotheses (by logs, logits, interactions, polynomials, repeated measures as slope or covariates, etc.) to meta-science and the principles of meta-analysis needed to use research literature. And, as expected, the more elegant full GLM means explicitly GLM software can be easier to learn and use. DOI:10.2458/azu_jmmss_v6i2_gorsuch
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
26 weeks
期刊最新文献
Invitation for COVID-19 Submissions Machine Learning Method for High-Dimensional Education Data Comparing human coding to two natural language processing algorithms in aspirations of people affected by Duchenne Muscular Dystrophy The Modern Biased Information Test: Proposing alternatives for implicit measures Binary Classification: An Introductory Machine Learning Tutorial for Social Scientists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1