咖啡番泻下胚轴愈伤组织离体植株再生研究

IF 0.5 4区 生物学 Q4 PLANT SCIENCES Acta Biologica Cracoviensia Series Botanica Pub Date : 2013-12-01 DOI:10.2478/ABCSB-2013-0031
T. Isah, A. Mujib
{"title":"咖啡番泻下胚轴愈伤组织离体植株再生研究","authors":"T. Isah, A. Mujib","doi":"10.2478/ABCSB-2013-0031","DOIUrl":null,"url":null,"abstract":"An efficient system for plant regeneration of Senna occidentalis from hypocotyl-derived callus was developed. Callus was induced from leaf and hypocotyl explants on MS medium amended with 9.04 μM 2,4-D + 2.22 μM BAP and 10.74 μM NAA + 2.22 μM BAP. Medium browning due to leaching of compounds from callus was encountered and ameliorated through incorporation of 2.84 μM ascorbic acid. Leaf-derived callus showed no shoot induction ability, while hypocotyl-derived callus produced shoots in all cytokinin-amended treatments and also in combination with 2.68 μM NAA. For shoot formation, BAP-augmented treatments were better than medium with Kin added. Rhizogenesis was better on 1/2 MS basal medium with IBA than in the NAA and IAA treatments. Regenerated plants were acclimatized with 94% survival and showed similar morphology to field-grown plants.","PeriodicalId":45465,"journal":{"name":"Acta Biologica Cracoviensia Series Botanica","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/ABCSB-2013-0031","citationCount":"13","resultStr":"{\"title\":\"IN VITRO PLANT REGENERATION OF COFFEE SENNA (SENNA OCCIDENTALIS) FROM HYPOCOTYL-DERIVED CALLUS\",\"authors\":\"T. Isah, A. Mujib\",\"doi\":\"10.2478/ABCSB-2013-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient system for plant regeneration of Senna occidentalis from hypocotyl-derived callus was developed. Callus was induced from leaf and hypocotyl explants on MS medium amended with 9.04 μM 2,4-D + 2.22 μM BAP and 10.74 μM NAA + 2.22 μM BAP. Medium browning due to leaching of compounds from callus was encountered and ameliorated through incorporation of 2.84 μM ascorbic acid. Leaf-derived callus showed no shoot induction ability, while hypocotyl-derived callus produced shoots in all cytokinin-amended treatments and also in combination with 2.68 μM NAA. For shoot formation, BAP-augmented treatments were better than medium with Kin added. Rhizogenesis was better on 1/2 MS basal medium with IBA than in the NAA and IAA treatments. Regenerated plants were acclimatized with 94% survival and showed similar morphology to field-grown plants.\",\"PeriodicalId\":45465,\"journal\":{\"name\":\"Acta Biologica Cracoviensia Series Botanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/ABCSB-2013-0031\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biologica Cracoviensia Series Botanica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2478/ABCSB-2013-0031\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biologica Cracoviensia Series Botanica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2478/ABCSB-2013-0031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 13

摘要

建立了一套高效的西番泻下胚轴愈伤组织再生体系。叶片和下胚轴外植体在添加9.04 μM 2,4- d + 2.22 μM BAP和10.74 μM NAA + 2.22 μM BAP的MS培养基上诱导愈伤组织。通过加入2.84 μM的抗坏血酸,可以改善愈伤组织中化合物浸出造成的中度褐变。在所有细胞分裂素和2.68 μM NAA处理下,叶源愈伤组织均无诱导出芽能力,而下胚轴源愈伤组织均有诱导出芽的能力。在芽形成方面,bap增强处理优于添加Kin的培养基。IBA在1/ 2ms基础培养基上的生根效果优于NAA和IAA处理。再生植株的驯化成活率为94%,其形态与田间栽培植株相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IN VITRO PLANT REGENERATION OF COFFEE SENNA (SENNA OCCIDENTALIS) FROM HYPOCOTYL-DERIVED CALLUS
An efficient system for plant regeneration of Senna occidentalis from hypocotyl-derived callus was developed. Callus was induced from leaf and hypocotyl explants on MS medium amended with 9.04 μM 2,4-D + 2.22 μM BAP and 10.74 μM NAA + 2.22 μM BAP. Medium browning due to leaching of compounds from callus was encountered and ameliorated through incorporation of 2.84 μM ascorbic acid. Leaf-derived callus showed no shoot induction ability, while hypocotyl-derived callus produced shoots in all cytokinin-amended treatments and also in combination with 2.68 μM NAA. For shoot formation, BAP-augmented treatments were better than medium with Kin added. Rhizogenesis was better on 1/2 MS basal medium with IBA than in the NAA and IAA treatments. Regenerated plants were acclimatized with 94% survival and showed similar morphology to field-grown plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA BIOLOGICA CRACOVIENSIA Series Botanica is an English-language journal founded in 1958, devoted to plant anatomy and morphology, cytology, genetics, embryology, tissue culture, physiology, biochemistry, biosystematics, molecular phylogenetics and phylogeography, as well as phytochemistry. It is published twice a year.
期刊最新文献
Chromosome numbers in Hieracium (Asteraceae) from Central and Southeastern Europe V Chromosome numbers in Hieracium (Asteraceae) from Central and Southeastern Europe VI Production and Characterization of Tissue Cultures of Four Crocus Species from the Carpathian Basin Cloning, Expression and Genetic Transformation of Sucrose Phosphate Synthase (Sps) Gene in Saccharum Spontaneum L. Chromosome Numbers in 11 Species of Taraxacum Section Erythrosperma Dt. from Poland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1