松栎林中单萜、异戊二烯和异戊二烯氧化产物的林冠通量

IF 1.4 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural Meteorology Pub Date : 2020-01-01 DOI:10.2480/agrmet.d-19-00039
Tomoki Mochizuki, S. Takanashi, R. Wada, Y. Miyazaki, T. Nakano, A. Tani
{"title":"松栎林中单萜、异戊二烯和异戊二烯氧化产物的林冠通量","authors":"Tomoki Mochizuki, S. Takanashi, R. Wada, Y. Miyazaki, T. Nakano, A. Tani","doi":"10.2480/agrmet.d-19-00039","DOIUrl":null,"url":null,"abstract":"Monoterpenes and isoprene emitted from forest ecosystems contribute to the formation of secondary organic aerosols (SOAs) and photochemical oxidants (Ox) and affect an ecosystem’s carbon budget. Initial oxidation products of isoprene, methacrolein (MACR) and methyl vinyl ketone (MVK), are key intermediate compounds for the formation of SOAs and Ox, but the production and loss processes of MACR and MVK and its controlling factors within a forest have not been revealed. To address them within a forest and the behavior of related compounds, we measured vertical concentrations and fluxes of monoterpenes, isoprene, and MACR+MVK in a pine-oak forest during summer. Monoterpene concentrations were the highest near the forest floor. A higher isoprene concentration was observed at the height of the Quercus trees. High positive fluxes of monoterpenes and isoprene were observed during the day. The average flux of isoprene during the measurement period was 2.6 times higher than that of monoterpene. Quercus in the lower layer of the forest can be an important source of isoprene, even though the light intensity was estimated much lower than that of red pine canopy. The MACR+MVK concentrations did not show clear vertical gradient patterns. Both positive and negative MACR+MVK fluxes were observed and large positive MACR+MVK fluxes were occasionally observed under a relatively high O3 concentration and isoprene flux around noon or during the afternoon, suggesting that they are produced more frequently by reaction with reactive species including O3 at a higher temperature. Our results demonstrate that, to investigate sink and source dynamics of MACR+MVK above a forest, it is necessary to separately estimate production rate of MACR+MVK, which depends on isoprene emission from the target and surrounding forests, O3 concentration, temperature, and its deposition rate, which is controlled by its concentration and micrometeorological factors.","PeriodicalId":56074,"journal":{"name":"Journal of Agricultural Meteorology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2480/agrmet.d-19-00039","citationCount":"6","resultStr":"{\"title\":\"Canopy fluxes of monoterpene, isoprene and isoprene oxidation products in a pine-oak forest\",\"authors\":\"Tomoki Mochizuki, S. Takanashi, R. Wada, Y. Miyazaki, T. Nakano, A. Tani\",\"doi\":\"10.2480/agrmet.d-19-00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monoterpenes and isoprene emitted from forest ecosystems contribute to the formation of secondary organic aerosols (SOAs) and photochemical oxidants (Ox) and affect an ecosystem’s carbon budget. Initial oxidation products of isoprene, methacrolein (MACR) and methyl vinyl ketone (MVK), are key intermediate compounds for the formation of SOAs and Ox, but the production and loss processes of MACR and MVK and its controlling factors within a forest have not been revealed. To address them within a forest and the behavior of related compounds, we measured vertical concentrations and fluxes of monoterpenes, isoprene, and MACR+MVK in a pine-oak forest during summer. Monoterpene concentrations were the highest near the forest floor. A higher isoprene concentration was observed at the height of the Quercus trees. High positive fluxes of monoterpenes and isoprene were observed during the day. The average flux of isoprene during the measurement period was 2.6 times higher than that of monoterpene. Quercus in the lower layer of the forest can be an important source of isoprene, even though the light intensity was estimated much lower than that of red pine canopy. The MACR+MVK concentrations did not show clear vertical gradient patterns. Both positive and negative MACR+MVK fluxes were observed and large positive MACR+MVK fluxes were occasionally observed under a relatively high O3 concentration and isoprene flux around noon or during the afternoon, suggesting that they are produced more frequently by reaction with reactive species including O3 at a higher temperature. Our results demonstrate that, to investigate sink and source dynamics of MACR+MVK above a forest, it is necessary to separately estimate production rate of MACR+MVK, which depends on isoprene emission from the target and surrounding forests, O3 concentration, temperature, and its deposition rate, which is controlled by its concentration and micrometeorological factors.\",\"PeriodicalId\":56074,\"journal\":{\"name\":\"Journal of Agricultural Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2480/agrmet.d-19-00039\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2480/agrmet.d-19-00039\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2480/agrmet.d-19-00039","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

森林生态系统排放的单萜烯和异戊二烯有助于二次有机气溶胶(SOAs)和光化学氧化剂(Ox)的形成,并影响生态系统的碳收支。异戊二烯的初始氧化产物甲基丙烯醛(MACR)和甲基乙烯酮(MVK)是SOAs和Ox形成的关键中间化合物,但森林内MACR和MVK的产生和损失过程及其控制因素尚未揭示。为了在森林中解决这些问题以及相关化合物的行为,我们在夏季测量了松栎林中单萜、异戊二烯和MACR+MVK的垂直浓度和通量。单萜烯浓度在森林地表附近最高。异戊二烯浓度在栎树高处较高。白天观察到单萜和异戊二烯的高正通量。测量期间异戊二烯的平均通量是单萜烯的2.6倍。林下层栎树可能是异戊二烯的重要来源,尽管其光照强度远低于红松冠层。MACR+MVK浓度没有明显的垂直梯度模式。MACR+MVK的正通量和负通量均有观察,中午前后或下午,在相对较高的O3浓度和异戊二烯通量下,偶尔会观察到较大的MACR+MVK正通量,这表明在较高的温度下,MACR+MVK与O3等活性物质的反应更频繁。研究结果表明,要研究森林上空MACR+MVK的汇源动态,需要分别估算MACR+MVK的生成速率,这取决于目标森林和周围森林的异戊二烯排放、O3浓度、温度及其沉降速率,而其沉降速率受其浓度和微气象因素的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Canopy fluxes of monoterpene, isoprene and isoprene oxidation products in a pine-oak forest
Monoterpenes and isoprene emitted from forest ecosystems contribute to the formation of secondary organic aerosols (SOAs) and photochemical oxidants (Ox) and affect an ecosystem’s carbon budget. Initial oxidation products of isoprene, methacrolein (MACR) and methyl vinyl ketone (MVK), are key intermediate compounds for the formation of SOAs and Ox, but the production and loss processes of MACR and MVK and its controlling factors within a forest have not been revealed. To address them within a forest and the behavior of related compounds, we measured vertical concentrations and fluxes of monoterpenes, isoprene, and MACR+MVK in a pine-oak forest during summer. Monoterpene concentrations were the highest near the forest floor. A higher isoprene concentration was observed at the height of the Quercus trees. High positive fluxes of monoterpenes and isoprene were observed during the day. The average flux of isoprene during the measurement period was 2.6 times higher than that of monoterpene. Quercus in the lower layer of the forest can be an important source of isoprene, even though the light intensity was estimated much lower than that of red pine canopy. The MACR+MVK concentrations did not show clear vertical gradient patterns. Both positive and negative MACR+MVK fluxes were observed and large positive MACR+MVK fluxes were occasionally observed under a relatively high O3 concentration and isoprene flux around noon or during the afternoon, suggesting that they are produced more frequently by reaction with reactive species including O3 at a higher temperature. Our results demonstrate that, to investigate sink and source dynamics of MACR+MVK above a forest, it is necessary to separately estimate production rate of MACR+MVK, which depends on isoprene emission from the target and surrounding forests, O3 concentration, temperature, and its deposition rate, which is controlled by its concentration and micrometeorological factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Meteorology
Journal of Agricultural Meteorology AGRICULTURE, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
2.70
自引率
7.70%
发文量
18
期刊介绍: For over 70 years, the Journal of Agricultural Meteorology has published original papers and review articles on the science of physical and biological processes in natural and managed ecosystems. Published topics include, but are not limited to, weather disasters, local climate, micrometeorology, climate change, soil environment, plant phenology, plant response to environmental change, crop growth and yield prediction, instrumentation, and environmental control across a wide range of managed ecosystems, from open fields to greenhouses and plant factories.
期刊最新文献
Climate-induced risk assessment of future rice production value in the Tohoku and Kyushu regions, Japan Assessing the expansion of suitable locations for avocado cultivation due to climate change in Japan and its suitability as a substitute for satsuma mandarins Revealing the spatial characteristics of rice heat exposure in Japan through panicle temperature analysis Experimental study on cold tolerance thresholds in field grown subtropical fruit trees Impact of the 2015 El Niño event on Borneo: Detection of drought damage using solar-induced chlorophyll fluorescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1