综述:陆地生态系统与大气间挥发性有机物的交换

IF 1.4 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural Meteorology Pub Date : 2021-01-01 DOI:10.2480/agrmet.d-20-00025
A. Tani, Tomoki Mochizuki
{"title":"综述:陆地生态系统与大气间挥发性有机物的交换","authors":"A. Tani, Tomoki Mochizuki","doi":"10.2480/agrmet.d-20-00025","DOIUrl":null,"url":null,"abstract":"Many VOCs are reactive in the atmosphere, may produce secondary organic aerosol (SOA), and keep photochemical ozone concentrations high by VOC-involved reactions. Accumulated studies have shown the importance of terrestrial ecosystems which can be sinks and sources of VOCs. The research progress in the exchange of volatile organic compounds (VOCs) between terrestrial ecosystems and the atmosphere was reviewed in this paper. Representative VOCs emitted from terrestrial ecosystems are low-molecular-weight oxygenated VOCs including methanol, acetone, formic and acetic acids, and terpenoids, including isoprene and monoterpenes. Terpenoid emissions have been intensively investigated from the leaf to the canopy level using advanced analytical systems, including proton-transfer-reaction mass spectrometry. Environmental factors, including temperature, light intensity, carbon dioxide and ozone concentrations, and water stress have been reported to affect terpenoid emissions from plants. The combined effects of these environments influence terpenoid emission additively or interactively, and are important in terms of VOC emission estimates against ongoing climate change. Isoprene is most abundantly released into the atmosphere among VOCs; the potential reasons why some plants release such large amounts of carbon as isoprene were summarized in this study. Among oxygenated VOCs, some compounds, including isoprene oxygenates methacrolein and methyl vinyl ketone, are bidirectionally exchanged, and both atmospheric chemical reactions and reactions under oxidative stress in leaves have been regarded as involved in bidirectional VOC exchanges. Bottom-up process-based models and top-down inverse models have been developed to estimate global and local terpenoid emissions. To validate the accuracy and precision of the models, the collection of additional in-situ ground truth data, such as long-term flux measurement data, at various sites is required. Otherwise, these models may still leave large uncertainties compared with CO2 flux models that can be validated with a large number of ground truth flux data.","PeriodicalId":56074,"journal":{"name":"Journal of Agricultural Meteorology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Review: Exchanges of volatile organic compounds between terrestrial ecosystems and the atmosphere\",\"authors\":\"A. Tani, Tomoki Mochizuki\",\"doi\":\"10.2480/agrmet.d-20-00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many VOCs are reactive in the atmosphere, may produce secondary organic aerosol (SOA), and keep photochemical ozone concentrations high by VOC-involved reactions. Accumulated studies have shown the importance of terrestrial ecosystems which can be sinks and sources of VOCs. The research progress in the exchange of volatile organic compounds (VOCs) between terrestrial ecosystems and the atmosphere was reviewed in this paper. Representative VOCs emitted from terrestrial ecosystems are low-molecular-weight oxygenated VOCs including methanol, acetone, formic and acetic acids, and terpenoids, including isoprene and monoterpenes. Terpenoid emissions have been intensively investigated from the leaf to the canopy level using advanced analytical systems, including proton-transfer-reaction mass spectrometry. Environmental factors, including temperature, light intensity, carbon dioxide and ozone concentrations, and water stress have been reported to affect terpenoid emissions from plants. The combined effects of these environments influence terpenoid emission additively or interactively, and are important in terms of VOC emission estimates against ongoing climate change. Isoprene is most abundantly released into the atmosphere among VOCs; the potential reasons why some plants release such large amounts of carbon as isoprene were summarized in this study. Among oxygenated VOCs, some compounds, including isoprene oxygenates methacrolein and methyl vinyl ketone, are bidirectionally exchanged, and both atmospheric chemical reactions and reactions under oxidative stress in leaves have been regarded as involved in bidirectional VOC exchanges. Bottom-up process-based models and top-down inverse models have been developed to estimate global and local terpenoid emissions. To validate the accuracy and precision of the models, the collection of additional in-situ ground truth data, such as long-term flux measurement data, at various sites is required. Otherwise, these models may still leave large uncertainties compared with CO2 flux models that can be validated with a large number of ground truth flux data.\",\"PeriodicalId\":56074,\"journal\":{\"name\":\"Journal of Agricultural Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2480/agrmet.d-20-00025\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2480/agrmet.d-20-00025","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19

摘要

许多挥发性有机化合物在大气中具有活性,可产生二次有机气溶胶(SOA),并通过与挥发性有机化合物有关的反应使光化学臭氧浓度保持较高。累积的研究表明陆地生态系统的重要性,陆地生态系统可以成为挥发性有机化合物的汇和源。综述了近年来陆地生态系统与大气间挥发性有机物交换的研究进展。陆地生态系统排放的代表性挥发性有机化合物是低分子量的含氧挥发性有机化合物,包括甲醇、丙酮、甲酸和乙酸,以及萜类化合物,包括异戊二烯和单萜烯。利用先进的分析系统,包括质子转移反应质谱法,深入研究了从叶片到冠层的萜类化合物排放。据报道,包括温度、光照强度、二氧化碳和臭氧浓度以及水分胁迫在内的环境因素会影响植物的萜类化合物排放。这些环境的综合效应对萜类化合物排放的影响是附加的或交互的,并且在针对持续气候变化的VOC排放估计方面是重要的。异戊二烯在挥发性有机化合物中释放到大气中的量最大;本研究总结了一些植物释放异戊二烯等大量碳的潜在原因。氧合VOC中,异戊二烯氧合物甲基丙烯醛和甲基乙烯酮等化合物是双向交换的,大气化学反应和叶片氧化胁迫下的反应都参与了双向交换。已经开发了基于自下而上过程的模型和自上而下的逆模型来估计全球和局部萜类化合物的排放。为了验证模型的准确性和精度,需要在各个站点收集额外的现场真实数据,例如长期通量测量数据。否则,与CO2通量模型相比,这些模型仍然可能留下很大的不确定性,CO2通量模型可以用大量的地面真值通量数据进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review: Exchanges of volatile organic compounds between terrestrial ecosystems and the atmosphere
Many VOCs are reactive in the atmosphere, may produce secondary organic aerosol (SOA), and keep photochemical ozone concentrations high by VOC-involved reactions. Accumulated studies have shown the importance of terrestrial ecosystems which can be sinks and sources of VOCs. The research progress in the exchange of volatile organic compounds (VOCs) between terrestrial ecosystems and the atmosphere was reviewed in this paper. Representative VOCs emitted from terrestrial ecosystems are low-molecular-weight oxygenated VOCs including methanol, acetone, formic and acetic acids, and terpenoids, including isoprene and monoterpenes. Terpenoid emissions have been intensively investigated from the leaf to the canopy level using advanced analytical systems, including proton-transfer-reaction mass spectrometry. Environmental factors, including temperature, light intensity, carbon dioxide and ozone concentrations, and water stress have been reported to affect terpenoid emissions from plants. The combined effects of these environments influence terpenoid emission additively or interactively, and are important in terms of VOC emission estimates against ongoing climate change. Isoprene is most abundantly released into the atmosphere among VOCs; the potential reasons why some plants release such large amounts of carbon as isoprene were summarized in this study. Among oxygenated VOCs, some compounds, including isoprene oxygenates methacrolein and methyl vinyl ketone, are bidirectionally exchanged, and both atmospheric chemical reactions and reactions under oxidative stress in leaves have been regarded as involved in bidirectional VOC exchanges. Bottom-up process-based models and top-down inverse models have been developed to estimate global and local terpenoid emissions. To validate the accuracy and precision of the models, the collection of additional in-situ ground truth data, such as long-term flux measurement data, at various sites is required. Otherwise, these models may still leave large uncertainties compared with CO2 flux models that can be validated with a large number of ground truth flux data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Meteorology
Journal of Agricultural Meteorology AGRICULTURE, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
2.70
自引率
7.70%
发文量
18
期刊介绍: For over 70 years, the Journal of Agricultural Meteorology has published original papers and review articles on the science of physical and biological processes in natural and managed ecosystems. Published topics include, but are not limited to, weather disasters, local climate, micrometeorology, climate change, soil environment, plant phenology, plant response to environmental change, crop growth and yield prediction, instrumentation, and environmental control across a wide range of managed ecosystems, from open fields to greenhouses and plant factories.
期刊最新文献
Climate-induced risk assessment of future rice production value in the Tohoku and Kyushu regions, Japan Assessing the expansion of suitable locations for avocado cultivation due to climate change in Japan and its suitability as a substitute for satsuma mandarins Revealing the spatial characteristics of rice heat exposure in Japan through panicle temperature analysis Experimental study on cold tolerance thresholds in field grown subtropical fruit trees Impact of the 2015 El Niño event on Borneo: Detection of drought damage using solar-induced chlorophyll fluorescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1