受控环境下光合光子通量密度和光照周期对苦参生长和喜树碱积累的影响

IF 1.4 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural Meteorology Pub Date : 2020-01-01 DOI:10.2480/agrmet.d-20-00026
Ji-Yoon Lee, A. Shimano, S. Hikosaka, Y. Ishigami, E. Goto
{"title":"受控环境下光合光子通量密度和光照周期对苦参生长和喜树碱积累的影响","authors":"Ji-Yoon Lee, A. Shimano, S. Hikosaka, Y. Ishigami, E. Goto","doi":"10.2480/agrmet.d-20-00026","DOIUrl":null,"url":null,"abstract":"Ophiorrhiza pumila is a medicinal plant distributed on the floors of humid inland forests in subtropical areas and accumulates camptothecin (CPT) in whole plant organs. To elucidate the proper light and air temperature conditions for plant growth and CPT yield, we conducted two experiments under controlled environments. In experiment 1, we measured the net photosynthetic rate (Pn) and transpiration rate (E) of the whole plant O. pumila using an open-type assimilation chamber under different photosynthetic photon flux densities (PPFDs) and air temperatures. The result showed that the combination of an air temperature of 28 °C and a PPFD of 100 μmol m s was a good condition for photosynthesis and transpiration. In experiment 2, O. pumila was cultivated for 35 days under three PPFDs and three light periods at an air temperature of 28 °C. At a PPFD of 100 μmol m s and a light period of 16 h, growth was accelerated by the generating the lateral shoots and branches, and total CPT content per plant was the highest among these treatments. The present study revealed that the proper PPFD and light period conditions could enhance growth and CPT accumulation of O. pumila.","PeriodicalId":56074,"journal":{"name":"Journal of Agricultural Meteorology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of photosynthetic photon flux density and light period on growth and camptothecin accumulation of Ophiorrhiza pumila under controlled environments\",\"authors\":\"Ji-Yoon Lee, A. Shimano, S. Hikosaka, Y. Ishigami, E. Goto\",\"doi\":\"10.2480/agrmet.d-20-00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ophiorrhiza pumila is a medicinal plant distributed on the floors of humid inland forests in subtropical areas and accumulates camptothecin (CPT) in whole plant organs. To elucidate the proper light and air temperature conditions for plant growth and CPT yield, we conducted two experiments under controlled environments. In experiment 1, we measured the net photosynthetic rate (Pn) and transpiration rate (E) of the whole plant O. pumila using an open-type assimilation chamber under different photosynthetic photon flux densities (PPFDs) and air temperatures. The result showed that the combination of an air temperature of 28 °C and a PPFD of 100 μmol m s was a good condition for photosynthesis and transpiration. In experiment 2, O. pumila was cultivated for 35 days under three PPFDs and three light periods at an air temperature of 28 °C. At a PPFD of 100 μmol m s and a light period of 16 h, growth was accelerated by the generating the lateral shoots and branches, and total CPT content per plant was the highest among these treatments. The present study revealed that the proper PPFD and light period conditions could enhance growth and CPT accumulation of O. pumila.\",\"PeriodicalId\":56074,\"journal\":{\"name\":\"Journal of Agricultural Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2480/agrmet.d-20-00026\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2480/agrmet.d-20-00026","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

蛇根草(Ophiorrhiza pumila)是一种分布在亚热带湿润内陆森林地面的药用植物,在植物的整个器官中积累喜树碱(CPT)。为了阐明适宜的光照和空气温度条件对植物生长和CPT产量的影响,我们在受控环境下进行了两个实验。实验1在不同光合光子通量密度(ppfd)和不同气温条件下,利用开放式同化室测定了全株水草的净光合速率(Pn)和蒸腾速率(E)。结果表明,28℃的空气温度和100 μmol m s的PPFD是光合作用和蒸腾作用的良好条件。实验2在28℃的空气温度下,在3种ppfd和3个光照周期下培养35 d。在PPFD为100 μmol m s、光照16 h时,产生侧枝和侧枝有利于植株生长,且单株总CPT含量最高。本研究表明,适当的PPFD和光照条件可以促进稻壳的生长和CPT的积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of photosynthetic photon flux density and light period on growth and camptothecin accumulation of Ophiorrhiza pumila under controlled environments
Ophiorrhiza pumila is a medicinal plant distributed on the floors of humid inland forests in subtropical areas and accumulates camptothecin (CPT) in whole plant organs. To elucidate the proper light and air temperature conditions for plant growth and CPT yield, we conducted two experiments under controlled environments. In experiment 1, we measured the net photosynthetic rate (Pn) and transpiration rate (E) of the whole plant O. pumila using an open-type assimilation chamber under different photosynthetic photon flux densities (PPFDs) and air temperatures. The result showed that the combination of an air temperature of 28 °C and a PPFD of 100 μmol m s was a good condition for photosynthesis and transpiration. In experiment 2, O. pumila was cultivated for 35 days under three PPFDs and three light periods at an air temperature of 28 °C. At a PPFD of 100 μmol m s and a light period of 16 h, growth was accelerated by the generating the lateral shoots and branches, and total CPT content per plant was the highest among these treatments. The present study revealed that the proper PPFD and light period conditions could enhance growth and CPT accumulation of O. pumila.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Meteorology
Journal of Agricultural Meteorology AGRICULTURE, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
2.70
自引率
7.70%
发文量
18
期刊介绍: For over 70 years, the Journal of Agricultural Meteorology has published original papers and review articles on the science of physical and biological processes in natural and managed ecosystems. Published topics include, but are not limited to, weather disasters, local climate, micrometeorology, climate change, soil environment, plant phenology, plant response to environmental change, crop growth and yield prediction, instrumentation, and environmental control across a wide range of managed ecosystems, from open fields to greenhouses and plant factories.
期刊最新文献
Climate-induced risk assessment of future rice production value in the Tohoku and Kyushu regions, Japan Assessing the expansion of suitable locations for avocado cultivation due to climate change in Japan and its suitability as a substitute for satsuma mandarins Revealing the spatial characteristics of rice heat exposure in Japan through panicle temperature analysis Experimental study on cold tolerance thresholds in field grown subtropical fruit trees Impact of the 2015 El Niño event on Borneo: Detection of drought damage using solar-induced chlorophyll fluorescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1