落叶松幼林细根生物量、产量和呼吸的变化

IF 1.4 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural Meteorology Pub Date : 2021-01-01 DOI:10.2480/AGRMET.D-20-00049
Rui Cui, T. Hirano, Lifei Sun, Munemasa Teramoto, N. Liang
{"title":"落叶松幼林细根生物量、产量和呼吸的变化","authors":"Rui Cui, T. Hirano, Lifei Sun, Munemasa Teramoto, N. Liang","doi":"10.2480/AGRMET.D-20-00049","DOIUrl":null,"url":null,"abstract":"Root respiration ( R r ) plays a crucial role in the global carbon balance, because R r accounts for about a half of soil respiration in typical forest ecosystems. Plant roots are different in metabolism and functions according to size. Fine roots, which are typically defined as roots < 2 mm in diameter, perform important ecosystem functions and consequently govern belowground carbon cycles mainly because of their high turnover rates. However, the phenological variation of fine root functions is not well understood yet. To quantitatively examine the fine root functions, we adopted an approach to partition R r into growth respiration ( R g ) and maintenance respiration ( R m ) using a modified traditional model, in which R g was proportional to root production, and R m was proportional to root biomass and exponentially related to soil temperature. We conducted a field experiment on soil respiration and fine root biomass and production over a year in a larch-dominated young forest developing on the bare ground after removing surface organic soil to parameterize the model. The model was significantly parameterized using the field data measured in such simplified field conditions, because we could control spatial variation in heterotrophic respiration and contamination from roots other than fine roots. The annual R r of all roots was 94 g C m - 2 yr - 1 and accounted for 25 % of total soil respiration on average. The annual R r was partitioned into fine root R g , fine root R m and coarse root R m by 30, 44 and 26 % , respectively; coarse root R g was presumed to be negligible. Fine root R g and R m varied according to the seasonal variations of fine root production and soil temperature, respectively; the contribution of fine root biomass was minor because of its small seasonality. The contribution of R g to total fine root respiration was lower in the cold season with low production.","PeriodicalId":56074,"journal":{"name":"Journal of Agricultural Meteorology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Variations in biomass, production and respiration of fine roots in a young larch forest\",\"authors\":\"Rui Cui, T. Hirano, Lifei Sun, Munemasa Teramoto, N. Liang\",\"doi\":\"10.2480/AGRMET.D-20-00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Root respiration ( R r ) plays a crucial role in the global carbon balance, because R r accounts for about a half of soil respiration in typical forest ecosystems. Plant roots are different in metabolism and functions according to size. Fine roots, which are typically defined as roots < 2 mm in diameter, perform important ecosystem functions and consequently govern belowground carbon cycles mainly because of their high turnover rates. However, the phenological variation of fine root functions is not well understood yet. To quantitatively examine the fine root functions, we adopted an approach to partition R r into growth respiration ( R g ) and maintenance respiration ( R m ) using a modified traditional model, in which R g was proportional to root production, and R m was proportional to root biomass and exponentially related to soil temperature. We conducted a field experiment on soil respiration and fine root biomass and production over a year in a larch-dominated young forest developing on the bare ground after removing surface organic soil to parameterize the model. The model was significantly parameterized using the field data measured in such simplified field conditions, because we could control spatial variation in heterotrophic respiration and contamination from roots other than fine roots. The annual R r of all roots was 94 g C m - 2 yr - 1 and accounted for 25 % of total soil respiration on average. The annual R r was partitioned into fine root R g , fine root R m and coarse root R m by 30, 44 and 26 % , respectively; coarse root R g was presumed to be negligible. Fine root R g and R m varied according to the seasonal variations of fine root production and soil temperature, respectively; the contribution of fine root biomass was minor because of its small seasonality. The contribution of R g to total fine root respiration was lower in the cold season with low production.\",\"PeriodicalId\":56074,\"journal\":{\"name\":\"Journal of Agricultural Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2480/AGRMET.D-20-00049\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2480/AGRMET.D-20-00049","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

根系呼吸(R R)在全球碳平衡中起着至关重要的作用,因为R R约占典型森林生态系统土壤呼吸的一半。植物根的大小不同,其代谢和功能也不同。细根,通常被定义为直径小于2毫米的根,具有重要的生态系统功能,因此主要由于其高周转率而控制地下碳循环。然而,细根功能的物候变化尚不清楚。为了定量研究细根功能,我们采用了一种改进的传统模型,将R R划分为生长呼吸(R g)和维持呼吸(R m),其中R g与根系产量成正比,R m与根系生物量成正比,与土壤温度呈指数相关。为了对模型进行参数化,我们在一个以落叶松为主的裸地幼林中进行了1年的土壤呼吸、细根生物量和产量的野外试验。由于可以控制异养呼吸的空间变化和细根以外的根系污染,因此在简化的田间条件下测量的野外数据对模型进行了显著的参数化。所有根系的年R值为94 g C m - 2 yr - 1,平均占土壤呼吸总量的25%。年R R分别为细根R g、细根R m和粗根R m的30%、44%和26%;粗根rg可以忽略不计。细根R g和R m分别随细根产量和土壤温度的季节变化而变化;细根生物量的贡献较小,因为其季节性较小。在产量低的寒冷季节,R g对总细根呼吸的贡献较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variations in biomass, production and respiration of fine roots in a young larch forest
Root respiration ( R r ) plays a crucial role in the global carbon balance, because R r accounts for about a half of soil respiration in typical forest ecosystems. Plant roots are different in metabolism and functions according to size. Fine roots, which are typically defined as roots < 2 mm in diameter, perform important ecosystem functions and consequently govern belowground carbon cycles mainly because of their high turnover rates. However, the phenological variation of fine root functions is not well understood yet. To quantitatively examine the fine root functions, we adopted an approach to partition R r into growth respiration ( R g ) and maintenance respiration ( R m ) using a modified traditional model, in which R g was proportional to root production, and R m was proportional to root biomass and exponentially related to soil temperature. We conducted a field experiment on soil respiration and fine root biomass and production over a year in a larch-dominated young forest developing on the bare ground after removing surface organic soil to parameterize the model. The model was significantly parameterized using the field data measured in such simplified field conditions, because we could control spatial variation in heterotrophic respiration and contamination from roots other than fine roots. The annual R r of all roots was 94 g C m - 2 yr - 1 and accounted for 25 % of total soil respiration on average. The annual R r was partitioned into fine root R g , fine root R m and coarse root R m by 30, 44 and 26 % , respectively; coarse root R g was presumed to be negligible. Fine root R g and R m varied according to the seasonal variations of fine root production and soil temperature, respectively; the contribution of fine root biomass was minor because of its small seasonality. The contribution of R g to total fine root respiration was lower in the cold season with low production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Meteorology
Journal of Agricultural Meteorology AGRICULTURE, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
2.70
自引率
7.70%
发文量
18
期刊介绍: For over 70 years, the Journal of Agricultural Meteorology has published original papers and review articles on the science of physical and biological processes in natural and managed ecosystems. Published topics include, but are not limited to, weather disasters, local climate, micrometeorology, climate change, soil environment, plant phenology, plant response to environmental change, crop growth and yield prediction, instrumentation, and environmental control across a wide range of managed ecosystems, from open fields to greenhouses and plant factories.
期刊最新文献
Climate-induced risk assessment of future rice production value in the Tohoku and Kyushu regions, Japan Assessing the expansion of suitable locations for avocado cultivation due to climate change in Japan and its suitability as a substitute for satsuma mandarins Revealing the spatial characteristics of rice heat exposure in Japan through panicle temperature analysis Experimental study on cold tolerance thresholds in field grown subtropical fruit trees Impact of the 2015 El Niño event on Borneo: Detection of drought damage using solar-induced chlorophyll fluorescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1