利用数据流和建模潜力促进可持续发展

Q2 Computer Science Data Science Journal Pub Date : 2012-12-19 DOI:10.2481/dsj.009-027
Kassim S. Mwitondi, J. Bugrien
{"title":"利用数据流和建模潜力促进可持续发展","authors":"Kassim S. Mwitondi, J. Bugrien","doi":"10.2481/dsj.009-027","DOIUrl":null,"url":null,"abstract":"Tackling the global challenges relating to health, poverty, business, and the environment is heavily dependent on the flow and utilisation of data. However, while enhancements in data generation, storage, modelling, dissemination, and the related integration of global economies and societies are fast transforming the way we live and interact, the resulting dynamic, globalised, information society remains digitally divided. On the African continent in particular, this division has resulted in a gap between the knowledge generation and its transformation into tangible products and services. This paper proposes some fundamental approaches for a sustainable transformation of data into knowledge for the purpose of improving the people's quality of life. Its main strategy is based on a generic data sharing model providing access to data utilising and generating entities in a multi-disciplinary environment. It highlights the great potentials in using unsupervised and supervised modelling in tackling the typically predictive-in-nature challenges we face. Using both simulated and real data, the paper demonstrates how some of the key parameters may be generated and embedded in models to enhance their predictive power and reliability. The paper's conclusions include a proposed implementation framework setting the scene for the creation of decision support systems capable of addressing the key issues in society. It is expected that a sustainable data flow will forge synergies among the private sector, academic, and research institutions within and among countries. It is also expected that the paper's findings will help in the design and development of knowledge extraction from data in the wake of cloud computing and, hence, contribute towards the improvement in the people's overall quality of life. To avoid running high implementation costs, selected open source tools are recommended for developing and sustaining the system.","PeriodicalId":35375,"journal":{"name":"Data Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Harnessing Data Flow and Modelling Potentials for Sustainable Development\",\"authors\":\"Kassim S. Mwitondi, J. Bugrien\",\"doi\":\"10.2481/dsj.009-027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tackling the global challenges relating to health, poverty, business, and the environment is heavily dependent on the flow and utilisation of data. However, while enhancements in data generation, storage, modelling, dissemination, and the related integration of global economies and societies are fast transforming the way we live and interact, the resulting dynamic, globalised, information society remains digitally divided. On the African continent in particular, this division has resulted in a gap between the knowledge generation and its transformation into tangible products and services. This paper proposes some fundamental approaches for a sustainable transformation of data into knowledge for the purpose of improving the people's quality of life. Its main strategy is based on a generic data sharing model providing access to data utilising and generating entities in a multi-disciplinary environment. It highlights the great potentials in using unsupervised and supervised modelling in tackling the typically predictive-in-nature challenges we face. Using both simulated and real data, the paper demonstrates how some of the key parameters may be generated and embedded in models to enhance their predictive power and reliability. The paper's conclusions include a proposed implementation framework setting the scene for the creation of decision support systems capable of addressing the key issues in society. It is expected that a sustainable data flow will forge synergies among the private sector, academic, and research institutions within and among countries. It is also expected that the paper's findings will help in the design and development of knowledge extraction from data in the wake of cloud computing and, hence, contribute towards the improvement in the people's overall quality of life. To avoid running high implementation costs, selected open source tools are recommended for developing and sustaining the system.\",\"PeriodicalId\":35375,\"journal\":{\"name\":\"Data Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2481/dsj.009-027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2481/dsj.009-027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

解决与健康、贫困、商业和环境有关的全球挑战在很大程度上依赖于数据的流动和利用。然而,虽然全球经济和社会在数据生成、存储、建模、传播以及相关整合方面的增强正在迅速改变我们的生活和互动方式,但由此产生的动态、全球化的信息社会仍然存在数字鸿沟。特别是在非洲大陆,这种分工造成了知识产生与其转化为有形产品和服务之间的差距。本文提出了一些基本的方法,可持续地将数据转化为知识,以提高人们的生活质量。它的主要策略是基于一个通用的数据共享模型,提供对数据的访问,利用和生成多学科环境中的实体。它强调了使用无监督和有监督建模来解决我们面临的典型的自然预测挑战的巨大潜力。通过模拟和实际数据,本文演示了如何生成一些关键参数并将其嵌入到模型中,以提高模型的预测能力和可靠性。该论文的结论包括一个拟议的实施框架,为创建能够解决社会关键问题的决策支持系统奠定了基础。预计可持续的数据流动将在国家内部和国家之间的私营部门、学术和研究机构之间形成协同效应。本文的研究结果将有助于云计算时代的数据知识提取的设计和开发,从而有助于提高人们的整体生活质量。为了避免运行高的实现成本,建议选择开放源代码工具来开发和维护系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing Data Flow and Modelling Potentials for Sustainable Development
Tackling the global challenges relating to health, poverty, business, and the environment is heavily dependent on the flow and utilisation of data. However, while enhancements in data generation, storage, modelling, dissemination, and the related integration of global economies and societies are fast transforming the way we live and interact, the resulting dynamic, globalised, information society remains digitally divided. On the African continent in particular, this division has resulted in a gap between the knowledge generation and its transformation into tangible products and services. This paper proposes some fundamental approaches for a sustainable transformation of data into knowledge for the purpose of improving the people's quality of life. Its main strategy is based on a generic data sharing model providing access to data utilising and generating entities in a multi-disciplinary environment. It highlights the great potentials in using unsupervised and supervised modelling in tackling the typically predictive-in-nature challenges we face. Using both simulated and real data, the paper demonstrates how some of the key parameters may be generated and embedded in models to enhance their predictive power and reliability. The paper's conclusions include a proposed implementation framework setting the scene for the creation of decision support systems capable of addressing the key issues in society. It is expected that a sustainable data flow will forge synergies among the private sector, academic, and research institutions within and among countries. It is also expected that the paper's findings will help in the design and development of knowledge extraction from data in the wake of cloud computing and, hence, contribute towards the improvement in the people's overall quality of life. To avoid running high implementation costs, selected open source tools are recommended for developing and sustaining the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Science Journal
Data Science Journal Computer Science-Computer Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The Data Science Journal is a peer-reviewed electronic journal publishing papers on the management of data and databases in Science and Technology. Details can be found in the prospectus. The scope of the journal includes descriptions of data systems, their publication on the internet, applications and legal issues. All of the Sciences are covered, including the Physical Sciences, Engineering, the Geosciences and the Biosciences, along with Agriculture and the Medical Science. The journal publishes papers about data and data systems; it does not publish data or data compilations. However it may publish papers about methods of data compilation or analysis.
期刊最新文献
Data on the Margins – Data from LGBTIQ+ Populations in European Social Science Data Archives Insights on Sustainability of Earth Science Data Infrastructure Projects Using OpenBIS as Virtual Research Environment: An ELN-LIMS Open-Source Database Tool as a Framework within the CRC 1411 Design of Particulate Products Umbrella Data Management Plans to Integrate FAIR Data: Lessons From the ISIDORe and BY-COVID Consortia for Pandemic Preparedness The Launch of the <em>Data Science Journal</em>&nbsp;in 2002
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1