回应方式以及如何改正

Bert Weijters, Maggie Geuens, N. Schillewaert
{"title":"回应方式以及如何改正","authors":"Bert Weijters, Maggie Geuens, N. Schillewaert","doi":"10.2478/gfkmir-2014-0077","DOIUrl":null,"url":null,"abstract":"Abstract Cross-mode surveys are on the rise. Unfortunately, data obtained from different modes of data collection (e.g., telephone and online data) may not be comparable due to measurement bias, especially differences in acquiescence, disacquiescence, extreme and midpoint response styles. This article discusses a study that finds response style differences between data based on the same questionnaire, but obtained by different modes of data collection: paper-and-pencil questionnaires, telephone interviews, and online questionnaires. Similar problems may also occur in cross-national data. We propose a new method to measure response styles and correct for them: the representative indicators response style means and covariance structure (RIRSMACS) method","PeriodicalId":30678,"journal":{"name":"GfK Marketing Intelligence Review","volume":"1 1","pages":"44 - 53"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response Styles and how to Correct them\",\"authors\":\"Bert Weijters, Maggie Geuens, N. Schillewaert\",\"doi\":\"10.2478/gfkmir-2014-0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cross-mode surveys are on the rise. Unfortunately, data obtained from different modes of data collection (e.g., telephone and online data) may not be comparable due to measurement bias, especially differences in acquiescence, disacquiescence, extreme and midpoint response styles. This article discusses a study that finds response style differences between data based on the same questionnaire, but obtained by different modes of data collection: paper-and-pencil questionnaires, telephone interviews, and online questionnaires. Similar problems may also occur in cross-national data. We propose a new method to measure response styles and correct for them: the representative indicators response style means and covariance structure (RIRSMACS) method\",\"PeriodicalId\":30678,\"journal\":{\"name\":\"GfK Marketing Intelligence Review\",\"volume\":\"1 1\",\"pages\":\"44 - 53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GfK Marketing Intelligence Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/gfkmir-2014-0077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GfK Marketing Intelligence Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/gfkmir-2014-0077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要交叉模态调查正在兴起。不幸的是,由于测量偏差,从不同数据收集模式(例如电话和在线数据)获得的数据可能不具有可比性,特别是在默认、不默认、极端和中点响应风格方面的差异。本文讨论了一项研究,发现基于相同问卷的数据之间的回答风格差异,但通过不同的数据收集模式:纸笔问卷,电话访谈和在线问卷。在跨国数据中也可能出现类似的问题。本文提出了一种新的反应风格度量和校正方法:代表性指标反应风格均值和协方差结构(RIRSMACS)法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Response Styles and how to Correct them
Abstract Cross-mode surveys are on the rise. Unfortunately, data obtained from different modes of data collection (e.g., telephone and online data) may not be comparable due to measurement bias, especially differences in acquiescence, disacquiescence, extreme and midpoint response styles. This article discusses a study that finds response style differences between data based on the same questionnaire, but obtained by different modes of data collection: paper-and-pencil questionnaires, telephone interviews, and online questionnaires. Similar problems may also occur in cross-national data. We propose a new method to measure response styles and correct for them: the representative indicators response style means and covariance structure (RIRSMACS) method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Recreating Intimacy With Connected Consumers Seeding on Moving Ground: How Understanding Network Instability Can Improve Message Dissemination Business Model Innovation: How to Create Value in a Digital World From Corporate Philanthropy to Creating Shared Value: Big Pharma’s New Business Models in Developing Markets Branding Raw Material to Improve Human Rights: Intel’s Ban on Conflict Minerals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1