基于时差的软测量方法的思考及时差区间的讨论

H. Kaneko, K. Funatsu
{"title":"基于时差的软测量方法的思考及时差区间的讨论","authors":"H. Kaneko, K. Funatsu","doi":"10.2751/JCAC.13.29","DOIUrl":null,"url":null,"abstract":"In chemical plants, soft sensors have been widely used to estimate difficult-to-measure process variables online. The predictive accuracy of soft sensors decreases due to changes in the state of chemical plants, and soft sensor models based on time difference (TD) have been constructed for reducing the effects of deterioration with age such as the drift. However, details on models based on TD (TD models) remain to be clarified. In this study, therefore, TD models were discussed in terms of noise and variance in data, auto-correlation in process variables, degree of model accuracy, and so on. Then, we theoretically clarified and formulated the difference of predictive accuracy between normal models and TD models. The relationships and the formulas of TD were verified through the analysis of simulation data. Furthermore, we analyzed dynamic simulation data with considering observed disturbances and unobserved disturbances, and confirmed that predictive accuracy of TD models increased by setting appropriate intervals of TD.","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"13 1","pages":"29-43"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Consideration of Soft Sensor Methods Based on Time Difference and Discussion on Intervals of Time Difference\",\"authors\":\"H. Kaneko, K. Funatsu\",\"doi\":\"10.2751/JCAC.13.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In chemical plants, soft sensors have been widely used to estimate difficult-to-measure process variables online. The predictive accuracy of soft sensors decreases due to changes in the state of chemical plants, and soft sensor models based on time difference (TD) have been constructed for reducing the effects of deterioration with age such as the drift. However, details on models based on TD (TD models) remain to be clarified. In this study, therefore, TD models were discussed in terms of noise and variance in data, auto-correlation in process variables, degree of model accuracy, and so on. Then, we theoretically clarified and formulated the difference of predictive accuracy between normal models and TD models. The relationships and the formulas of TD were verified through the analysis of simulation data. Furthermore, we analyzed dynamic simulation data with considering observed disturbances and unobserved disturbances, and confirmed that predictive accuracy of TD models increased by setting appropriate intervals of TD.\",\"PeriodicalId\":41457,\"journal\":{\"name\":\"Journal of Computer Aided Chemistry\",\"volume\":\"13 1\",\"pages\":\"29-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Aided Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2751/JCAC.13.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Aided Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2751/JCAC.13.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在化工厂中,软传感器已被广泛用于在线估计难以测量的过程变量。由于化工设备运行状态的变化,软传感器的预测精度会下降,为了降低设备运行状态随时间的变化所产生的漂移等影响,建立了基于时间差的软传感器模型。然而,基于TD (TD模型)的模型的细节仍有待澄清。因此,本研究从数据的噪声和方差、过程变量的自相关、模型精度等方面对TD模型进行了讨论。然后,从理论上阐述了普通模型与TD模型预测精度的差异。通过对仿真数据的分析,验证了TD的关系式和公式。通过对动态仿真数据的分析,考虑了观测扰动和未观测扰动,确定了适当的TD区间可以提高TD模型的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consideration of Soft Sensor Methods Based on Time Difference and Discussion on Intervals of Time Difference
In chemical plants, soft sensors have been widely used to estimate difficult-to-measure process variables online. The predictive accuracy of soft sensors decreases due to changes in the state of chemical plants, and soft sensor models based on time difference (TD) have been constructed for reducing the effects of deterioration with age such as the drift. However, details on models based on TD (TD models) remain to be clarified. In this study, therefore, TD models were discussed in terms of noise and variance in data, auto-correlation in process variables, degree of model accuracy, and so on. Then, we theoretically clarified and formulated the difference of predictive accuracy between normal models and TD models. The relationships and the formulas of TD were verified through the analysis of simulation data. Furthermore, we analyzed dynamic simulation data with considering observed disturbances and unobserved disturbances, and confirmed that predictive accuracy of TD models increased by setting appropriate intervals of TD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Aided Chemistry
Journal of Computer Aided Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
期刊最新文献
A method to search the most stable reaction pathway and its application to the Pinner Pyrimidine Synthesis reaction Extended Regression Modeling of the Toxicity of Phenol Derivatives to Tetrahymena pyriformis Using the Electronic-Structure Informatics Descriptor Solvatochromism of 4-(diethylamino)-4’-nitroazobenzene: explanation based on CNDO/S calculation results Prediction of Compound Cytotoxicity Based on Compound Structures and Cell Line Molecular Characteristics [Special Issue for Honor Award dedicating to Prof Kimito Funatsu]Kimito Funatsu – Driving Force of Japanese-French Collaboration in Chemoinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1