Rough Set Theory对规则挖掘和结构活性相关的应用

清 長谷川, 倫央 光山, 正幹 荒川, 公人 船津
{"title":"Rough Set Theory对规则挖掘和结构活性相关的应用","authors":"清 長谷川, 倫央 光山, 正幹 荒川, 公人 船津","doi":"10.2751/JCAC.9.1","DOIUrl":null,"url":null,"abstract":"本論文では、ルールマイニング手法として知られているRough Set Theory (RST)を構造活性相関に応用することで、高活性に必要なルールが導けるかどうかを検証した。これまでルールマイニング手法としては、Inductive Logic Programming (ILP)が知られているが、学習の準備、特に、background knowledgeを事前に作成することが大変で、実際の応用は限定されていた。RSTはあいまいなものや粗いデータなどの不正確、不完全なものを類別するための理論である。これをルールマイニングの手法として用いる事で、あるサンプルと別のサンプルを区別するのに必要最小限の変数セット(reduct)を選択し、選択されたセットからルールを導くことが出来る。構造活性データとしては、Dihydrofolate reductase (DHFR)阻害剤を利用した。このデータセットは、これまで数多く解析され、構造要求性がよく知られている。得られたルールは、この構造要求性と類似しており、RSTの有効性を証明することができた。今回、母核構造が一定で活性値が定量的なデータで検証したが、多様な化合物を含むデータや活性値が不正確なデータへの応用も期待できる。","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"9 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2751/JCAC.9.1","citationCount":"2","resultStr":"{\"title\":\"Rough Set Theoryによるルールマイニングと構造活性相関への応用\",\"authors\":\"清 長谷川, 倫央 光山, 正幹 荒川, 公人 船津\",\"doi\":\"10.2751/JCAC.9.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"本論文では、ルールマイニング手法として知られているRough Set Theory (RST)を構造活性相関に応用することで、高活性に必要なルールが導けるかどうかを検証した。これまでルールマイニング手法としては、Inductive Logic Programming (ILP)が知られているが、学習の準備、特に、background knowledgeを事前に作成することが大変で、実際の応用は限定されていた。RSTはあいまいなものや粗いデータなどの不正確、不完全なものを類別するための理論である。これをルールマイニングの手法として用いる事で、あるサンプルと別のサンプルを区別するのに必要最小限の変数セット(reduct)を選択し、選択されたセットからルールを導くことが出来る。構造活性データとしては、Dihydrofolate reductase (DHFR)阻害剤を利用した。このデータセットは、これまで数多く解析され、構造要求性がよく知られている。得られたルールは、この構造要求性と類似しており、RSTの有効性を証明することができた。今回、母核構造が一定で活性値が定量的なデータで検証したが、多様な化合物を含むデータや活性値が不正確なデータへの応用も期待できる。\",\"PeriodicalId\":41457,\"journal\":{\"name\":\"Journal of Computer Aided Chemistry\",\"volume\":\"9 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2751/JCAC.9.1\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Aided Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2751/JCAC.9.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Aided Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2751/JCAC.9.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文通过将Rough Set Theory (RST)这种被称为规则挖掘方法应用于结构活性相关,验证了能否推导出高活性所需的规则。到目前为止,作为规则挖掘方法,Inductive Logic Programming (ILP)是众所周知的,但在学习的准备上,特别是background事先制作knowledge非常困难,实际应用受到限制。RST是一种用于分类模糊、粗糙数据等不准确、不完整数据的理论。通过将其用作规则挖掘的方法,可以选择区分一个样本和另一个样本所需的最小变量集合,并从所选择的集合导出规则。作为结构活性数据,利用了Dihydrofolate reductase (DHFR)抑制剂。该数据集至今已被大量解析,其结构要求性广为人知。所得到的规则类似于这种结构要求,从而能够证明RST的有效性。此次通过母核结构一定、活性值定量的数据进行了验证,但也有望应用于含有多种化合物或活性值不准确的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rough Set Theoryによるルールマイニングと構造活性相関への応用
本論文では、ルールマイニング手法として知られているRough Set Theory (RST)を構造活性相関に応用することで、高活性に必要なルールが導けるかどうかを検証した。これまでルールマイニング手法としては、Inductive Logic Programming (ILP)が知られているが、学習の準備、特に、background knowledgeを事前に作成することが大変で、実際の応用は限定されていた。RSTはあいまいなものや粗いデータなどの不正確、不完全なものを類別するための理論である。これをルールマイニングの手法として用いる事で、あるサンプルと別のサンプルを区別するのに必要最小限の変数セット(reduct)を選択し、選択されたセットからルールを導くことが出来る。構造活性データとしては、Dihydrofolate reductase (DHFR)阻害剤を利用した。このデータセットは、これまで数多く解析され、構造要求性がよく知られている。得られたルールは、この構造要求性と類似しており、RSTの有効性を証明することができた。今回、母核構造が一定で活性値が定量的なデータで検証したが、多様な化合物を含むデータや活性値が不正確なデータへの応用も期待できる。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Aided Chemistry
Journal of Computer Aided Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
期刊最新文献
A method to search the most stable reaction pathway and its application to the Pinner Pyrimidine Synthesis reaction Extended Regression Modeling of the Toxicity of Phenol Derivatives to Tetrahymena pyriformis Using the Electronic-Structure Informatics Descriptor Solvatochromism of 4-(diethylamino)-4’-nitroazobenzene: explanation based on CNDO/S calculation results Prediction of Compound Cytotoxicity Based on Compound Structures and Cell Line Molecular Characteristics [Special Issue for Honor Award dedicating to Prof Kimito Funatsu]Kimito Funatsu – Driving Force of Japanese-French Collaboration in Chemoinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1