超固结粉煤灰型粘土。直布罗陀海峡隧道项目的工程考虑

IF 1.1 Q4 ENGINEERING, GEOLOGICAL Soils and Rocks Pub Date : 2023-02-09 DOI:10.28927/sr.2023.002222
Francisco Manzano, F. Lamas, J. Azañón
{"title":"超固结粉煤灰型粘土。直布罗陀海峡隧道项目的工程考虑","authors":"Francisco Manzano, F. Lamas, J. Azañón","doi":"10.28927/sr.2023.002222","DOIUrl":null,"url":null,"abstract":"The stress-strain behaviour of 85 overconsolidated clay samples from Campo de Gibraltar Flysch Through Domain (Algeciras Unit, South Spain) is presented and discussed. The samples were identified and classified following ASTM standards while their chemical and mineralogical composition were determined by chemical and X-ray techniques. Several samples were tested under triaxial as well as oedometric conditions. Given the results, a detailed comparison was made between different theoretical constitutive models and real testing data, using the finite-elements method. The comparison indicated a good fit between experimental data and those found with finite-elements modelling when the Hardening Soil constitutive model was used. This model showed a better fit than did the Modified Cam- Clay model (historically used for modelling clayey soils), although the latter fit proved better for lower strain values (<5%) than higher ones. These results clarify this intermediate material (hard soils – weak rocks) behaviour and will help in Strait of Gibraltar tunnel project design, as these materials are widely involved in this tunnel design.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overconsolidated flysch-type clays. Engineering considerations for the Strait of Gibraltar tunnel project\",\"authors\":\"Francisco Manzano, F. Lamas, J. Azañón\",\"doi\":\"10.28927/sr.2023.002222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stress-strain behaviour of 85 overconsolidated clay samples from Campo de Gibraltar Flysch Through Domain (Algeciras Unit, South Spain) is presented and discussed. The samples were identified and classified following ASTM standards while their chemical and mineralogical composition were determined by chemical and X-ray techniques. Several samples were tested under triaxial as well as oedometric conditions. Given the results, a detailed comparison was made between different theoretical constitutive models and real testing data, using the finite-elements method. The comparison indicated a good fit between experimental data and those found with finite-elements modelling when the Hardening Soil constitutive model was used. This model showed a better fit than did the Modified Cam- Clay model (historically used for modelling clayey soils), although the latter fit proved better for lower strain values (<5%) than higher ones. These results clarify this intermediate material (hard soils – weak rocks) behaviour and will help in Strait of Gibraltar tunnel project design, as these materials are widely involved in this tunnel design.\",\"PeriodicalId\":43687,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2023.002222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.002222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并讨论了来自Campo de Gibraltar Flysch Through Domain (Algeciras Unit, South Spain)的85个超固结粘土样品的应力-应变行为。样品按照ASTM标准进行鉴定和分类,同时通过化学和x射线技术确定其化学和矿物学成分。几个样品在三轴和测量条件下进行了测试。在此基础上,采用有限元方法对不同理论本构模型与实际试验数据进行了详细比较。结果表明,采用硬化土本构模型时,实验数据与有限元模拟结果吻合较好。该模型显示出比修正Cam- Clay模型(历史上用于模拟黏性土壤)更好的拟合,尽管后者证明了较低应变值(<5%)比较高应变值更适合。这些结果澄清了中间材料(硬土-弱岩)的行为,并将有助于直布罗陀海峡隧道项目设计,因为这些材料广泛涉及该隧道设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overconsolidated flysch-type clays. Engineering considerations for the Strait of Gibraltar tunnel project
The stress-strain behaviour of 85 overconsolidated clay samples from Campo de Gibraltar Flysch Through Domain (Algeciras Unit, South Spain) is presented and discussed. The samples were identified and classified following ASTM standards while their chemical and mineralogical composition were determined by chemical and X-ray techniques. Several samples were tested under triaxial as well as oedometric conditions. Given the results, a detailed comparison was made between different theoretical constitutive models and real testing data, using the finite-elements method. The comparison indicated a good fit between experimental data and those found with finite-elements modelling when the Hardening Soil constitutive model was used. This model showed a better fit than did the Modified Cam- Clay model (historically used for modelling clayey soils), although the latter fit proved better for lower strain values (<5%) than higher ones. These results clarify this intermediate material (hard soils – weak rocks) behaviour and will help in Strait of Gibraltar tunnel project design, as these materials are widely involved in this tunnel design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soils and Rocks
Soils and Rocks ENGINEERING, GEOLOGICAL-
CiteScore
1.00
自引率
20.00%
发文量
49
期刊介绍: Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).
期刊最新文献
Discussion of “Systematic literature review and mapping of the prediction of pile capacities” Primary consolidation settlement due to ramp loading: Terzaghi (1943) method revisited Behavior of clayey soil treated with nano magnesium oxide material Numerical modeling of the behavior of a surface foundation located in the proximity of a slope Analysis of sorption/desorption of cadmium and lead in the legal amazon soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1