利用低强度生活废水快速开发微藻-细菌颗粒污泥

Q3 Environmental Science Journal of Water and Environment Technology Pub Date : 2021-01-01 DOI:10.2965/JWET.20-132
L. D. A. Purba, N. Abdullah, A. Yuzir, A. Zamyadi, K. Shimizu, J. Hermana
{"title":"利用低强度生活废水快速开发微藻-细菌颗粒污泥","authors":"L. D. A. Purba, N. Abdullah, A. Yuzir, A. Zamyadi, K. Shimizu, J. Hermana","doi":"10.2965/JWET.20-132","DOIUrl":null,"url":null,"abstract":"Recently, the symbiosis between microalgae and bacteria for wastewater treatment system receives more attention as microalgae and bacteria coexist symbiotically under suitable environmental condition. Moreover, the microalgae and bacteria interaction in granular form had been considered as an environmental friendly alternatives due to the synergistic cooperation between microalgae and bacteria in treating wastewater. This study aims to develop microalgae-bacteria aerobic granular sludge using low-strength domestic wastewater. A mixture of Scenedesmus obliquus and activated sludge at ratio of 17% microalgae to 83% activated sludge (v/v) was used as the seed sludge to develop microalgaebacteria aerobic granular sludge. Upon 30 days of experimental period, granular sludge was successfully developed with largest granular diameter of 6 mm. The developed granules exhibited excellent settling properties with 62.8 m/h settling velocity. Better granular settleability indicated by low sludge volume index (SVI30) was detected at 8 mL/g. Observation using field-emission scanning electron microscope (FESEM) showed the attachment of microalgae cells on the outer layer of granular sludge. Moreover, microalgae-bacteria aerobic granular sludge demonstrated good COD and ammoniacal nitrogen removal at 72% removal efficiency.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Rapid Development of Microalgae-Bacteria Granular Sludge Using Low-Strength Domestic Wastewater\",\"authors\":\"L. D. A. Purba, N. Abdullah, A. Yuzir, A. Zamyadi, K. Shimizu, J. Hermana\",\"doi\":\"10.2965/JWET.20-132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the symbiosis between microalgae and bacteria for wastewater treatment system receives more attention as microalgae and bacteria coexist symbiotically under suitable environmental condition. Moreover, the microalgae and bacteria interaction in granular form had been considered as an environmental friendly alternatives due to the synergistic cooperation between microalgae and bacteria in treating wastewater. This study aims to develop microalgae-bacteria aerobic granular sludge using low-strength domestic wastewater. A mixture of Scenedesmus obliquus and activated sludge at ratio of 17% microalgae to 83% activated sludge (v/v) was used as the seed sludge to develop microalgaebacteria aerobic granular sludge. Upon 30 days of experimental period, granular sludge was successfully developed with largest granular diameter of 6 mm. The developed granules exhibited excellent settling properties with 62.8 m/h settling velocity. Better granular settleability indicated by low sludge volume index (SVI30) was detected at 8 mL/g. Observation using field-emission scanning electron microscope (FESEM) showed the attachment of microalgae cells on the outer layer of granular sludge. Moreover, microalgae-bacteria aerobic granular sludge demonstrated good COD and ammoniacal nitrogen removal at 72% removal efficiency.\",\"PeriodicalId\":17480,\"journal\":{\"name\":\"Journal of Water and Environment Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environment Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2965/JWET.20-132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2965/JWET.20-132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 10

摘要

近年来,微藻与细菌在适宜的环境条件下共生,污水处理系统中微藻与细菌的共生关系受到越来越多的关注。此外,微藻与细菌以颗粒形式相互作用已被认为是一种环境友好的替代方案,因为微藻与细菌在处理废水时具有协同作用。本研究旨在利用低强度生活废水开发微藻-细菌好氧颗粒污泥。以微藻与活性污泥的比例为17% / 83% (v/v)的斜斑藻与活性污泥的混合物为种子污泥,培养微藻-细菌好氧颗粒污泥。经过30天的试验,成功研制出颗粒污泥,最大粒径达到6mm。发育的颗粒沉降速度为62.8 m/h,具有良好的沉降性能。污泥体积指数(SVI30)较低,表明在8 mL/g时颗粒沉降性较好。利用场发射扫描电镜(FESEM)观察,微藻细胞附着在颗粒污泥的外层。此外,微藻-细菌好氧颗粒污泥对COD和氨氮的去除率达到72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid Development of Microalgae-Bacteria Granular Sludge Using Low-Strength Domestic Wastewater
Recently, the symbiosis between microalgae and bacteria for wastewater treatment system receives more attention as microalgae and bacteria coexist symbiotically under suitable environmental condition. Moreover, the microalgae and bacteria interaction in granular form had been considered as an environmental friendly alternatives due to the synergistic cooperation between microalgae and bacteria in treating wastewater. This study aims to develop microalgae-bacteria aerobic granular sludge using low-strength domestic wastewater. A mixture of Scenedesmus obliquus and activated sludge at ratio of 17% microalgae to 83% activated sludge (v/v) was used as the seed sludge to develop microalgaebacteria aerobic granular sludge. Upon 30 days of experimental period, granular sludge was successfully developed with largest granular diameter of 6 mm. The developed granules exhibited excellent settling properties with 62.8 m/h settling velocity. Better granular settleability indicated by low sludge volume index (SVI30) was detected at 8 mL/g. Observation using field-emission scanning electron microscope (FESEM) showed the attachment of microalgae cells on the outer layer of granular sludge. Moreover, microalgae-bacteria aerobic granular sludge demonstrated good COD and ammoniacal nitrogen removal at 72% removal efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water and Environment Technology
Journal of Water and Environment Technology Environmental Science-Water Science and Technology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
43 weeks
期刊介绍: The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.
期刊最新文献
Control of Microcystis Buoyancy by Reducing Cellular Carbohydrate Content at High Temperature Estimating Green and Blue Water Footprint of Major Cereal and Vegetable Crops in Salale Zone, Oromia, Ethiopia Spontaneous Cell Lysis by Pelomonas saccharophila MRB3 Provides Plant-Available Macronutrients in Hydroponic Growth Media and Accelerates Biomass Production of Duckweed Brilliant Green Biosorption from Aqueous Solutions on Okara: Equilibrium, Kinetic and Thermodynamic Studies Synthesis and Optimization of Visible-light-driven G-C3N4/CoMoO4 for the Removal of Tetracycline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1