Ah Rume Julie Park, M. Upadhyay, William J. Anderson, A. Holmes
{"title":"如何找到一个基因:从基因数据库检索信息","authors":"Ah Rume Julie Park, M. Upadhyay, William J. Anderson, A. Holmes","doi":"10.24918/cs.2023.8","DOIUrl":null,"url":null,"abstract":"A strong understanding of distinct gene components and the ability to retrieve relevant information from gene databases are necessary to answer a diverse set of biological questions. However, often there is a considerable gap between students’ theoretical understanding of gene structure and applying that knowledge to design laboratory experiments. In order to bridge that gap, our lesson focuses on how to take advantage of readily available gene databases, after providing students with a strong foundation in the central dogma and gene structure. Our instructor-led group activity aids students in navigating the gene databases on their own, which enables them to design experiments and predict their outcomes. While our class focuses on cardiomyocyte differentiation, classes with a different focus can easily adapt our lesson, which can be conducted within a single class period. Our lesson elicits high engagement and learning outcomes from students, who gain a deeper understanding of the central dogma and apply that knowledge to studying gene functions","PeriodicalId":72713,"journal":{"name":"CourseSource","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Find a Gene: Retrieving Information From Gene Databases\",\"authors\":\"Ah Rume Julie Park, M. Upadhyay, William J. Anderson, A. Holmes\",\"doi\":\"10.24918/cs.2023.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A strong understanding of distinct gene components and the ability to retrieve relevant information from gene databases are necessary to answer a diverse set of biological questions. However, often there is a considerable gap between students’ theoretical understanding of gene structure and applying that knowledge to design laboratory experiments. In order to bridge that gap, our lesson focuses on how to take advantage of readily available gene databases, after providing students with a strong foundation in the central dogma and gene structure. Our instructor-led group activity aids students in navigating the gene databases on their own, which enables them to design experiments and predict their outcomes. While our class focuses on cardiomyocyte differentiation, classes with a different focus can easily adapt our lesson, which can be conducted within a single class period. Our lesson elicits high engagement and learning outcomes from students, who gain a deeper understanding of the central dogma and apply that knowledge to studying gene functions\",\"PeriodicalId\":72713,\"journal\":{\"name\":\"CourseSource\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CourseSource\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24918/cs.2023.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CourseSource","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24918/cs.2023.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to Find a Gene: Retrieving Information From Gene Databases
A strong understanding of distinct gene components and the ability to retrieve relevant information from gene databases are necessary to answer a diverse set of biological questions. However, often there is a considerable gap between students’ theoretical understanding of gene structure and applying that knowledge to design laboratory experiments. In order to bridge that gap, our lesson focuses on how to take advantage of readily available gene databases, after providing students with a strong foundation in the central dogma and gene structure. Our instructor-led group activity aids students in navigating the gene databases on their own, which enables them to design experiments and predict their outcomes. While our class focuses on cardiomyocyte differentiation, classes with a different focus can easily adapt our lesson, which can be conducted within a single class period. Our lesson elicits high engagement and learning outcomes from students, who gain a deeper understanding of the central dogma and apply that knowledge to studying gene functions