Thu Thanh Nguyen, M. Nakatsugawa, T. Yamada, T. Hoshino
{"title":"评估气候变化对日本石kari河流域夏季季风季节极端降雨和严重洪水的影响","authors":"Thu Thanh Nguyen, M. Nakatsugawa, T. Yamada, T. Hoshino","doi":"10.3178/hrl.14.155","DOIUrl":null,"url":null,"abstract":": This study investigates the change in extreme rainfall and river flooding for a large river basin due to climate change during the summer monsoon using a large ensemble dataset (d4PDF) coupled with the Integrated Flood Analy‐ sis System (IFAS). Frequent severe flooding causes signifi‐ cant damage in Japan. Therefore, we aim to provide useful information to mitigate flood damage. The study area is the Ishikari River basin (IRB) in Hokkaido, Japan. We used the d4PDF 5-km downscaled rainfall data as input for the IFAS model. The results showed that, for a given increase in extreme rainfall, the discharges from the IRB and its main sub-basins increase to a greater extent. The differences between the time of peak discharge at the reference stations in each tributary and the time of peak water level at the confluence points in the main river are evaluated. Climate change effects are significant in the southern sub-basins, wherein the amount of extreme rainfall increases by 29%– 35%, whereas the river discharge increases drastically (37%–56%). Additionally, the time difference decreases by 1.02–2.14 h. These findings will help policymakers develop future flood control measures in flood-prone areas.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Assessing climate change impacts on extreme rainfall and severe flooding during the summer monsoon season in the Ishikari River basin, Japan\",\"authors\":\"Thu Thanh Nguyen, M. Nakatsugawa, T. Yamada, T. Hoshino\",\"doi\":\"10.3178/hrl.14.155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This study investigates the change in extreme rainfall and river flooding for a large river basin due to climate change during the summer monsoon using a large ensemble dataset (d4PDF) coupled with the Integrated Flood Analy‐ sis System (IFAS). Frequent severe flooding causes signifi‐ cant damage in Japan. Therefore, we aim to provide useful information to mitigate flood damage. The study area is the Ishikari River basin (IRB) in Hokkaido, Japan. We used the d4PDF 5-km downscaled rainfall data as input for the IFAS model. The results showed that, for a given increase in extreme rainfall, the discharges from the IRB and its main sub-basins increase to a greater extent. The differences between the time of peak discharge at the reference stations in each tributary and the time of peak water level at the confluence points in the main river are evaluated. Climate change effects are significant in the southern sub-basins, wherein the amount of extreme rainfall increases by 29%– 35%, whereas the river discharge increases drastically (37%–56%). Additionally, the time difference decreases by 1.02–2.14 h. These findings will help policymakers develop future flood control measures in flood-prone areas.\",\"PeriodicalId\":13111,\"journal\":{\"name\":\"Hydrological Research Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3178/hrl.14.155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.14.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Assessing climate change impacts on extreme rainfall and severe flooding during the summer monsoon season in the Ishikari River basin, Japan
: This study investigates the change in extreme rainfall and river flooding for a large river basin due to climate change during the summer monsoon using a large ensemble dataset (d4PDF) coupled with the Integrated Flood Analy‐ sis System (IFAS). Frequent severe flooding causes signifi‐ cant damage in Japan. Therefore, we aim to provide useful information to mitigate flood damage. The study area is the Ishikari River basin (IRB) in Hokkaido, Japan. We used the d4PDF 5-km downscaled rainfall data as input for the IFAS model. The results showed that, for a given increase in extreme rainfall, the discharges from the IRB and its main sub-basins increase to a greater extent. The differences between the time of peak discharge at the reference stations in each tributary and the time of peak water level at the confluence points in the main river are evaluated. Climate change effects are significant in the southern sub-basins, wherein the amount of extreme rainfall increases by 29%– 35%, whereas the river discharge increases drastically (37%–56%). Additionally, the time difference decreases by 1.02–2.14 h. These findings will help policymakers develop future flood control measures in flood-prone areas.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.