卫星图像中河流洪水变化的可探测性

IF 0.6 Q4 WATER RESOURCES Hydrological Research Letters Pub Date : 2021-01-01 DOI:10.3178/hrl.15.37
Y. Hirabayashi, Haireti Alifu, Dai Yamazaki, ‪Gennadii Donchyts, Yuki Kimura
{"title":"卫星图像中河流洪水变化的可探测性","authors":"Y. Hirabayashi, Haireti Alifu, Dai Yamazaki, ‪Gennadii Donchyts, Yuki Kimura","doi":"10.3178/hrl.15.37","DOIUrl":null,"url":null,"abstract":"Floods are major natural disasters that have considerable consequences worldwide. As the frequency and magnitude of flooding are expected to be affected by ongoing climate change, understanding their past changes is important for developing adequate adaptation measures. However, the limited spatiotemporal coverage of flood gauges hinders detection of changes in flooding, particularly in poorly gauged regions. Here, we propose a method using surface water data of river floodplain inundation as a proxy of the magnitude and frequency of flooding. Surface water data − Aqua Monitor which represented the probability linear trend changes in land and water surface area based on 30-m Landsat images between 1984–2000 and 2000–2013 was used in this study. The changes in water surface area over the floodplain obtained from Aqua Monitor showed high correspondence with historical trends observed or simulated annual maximum daily discharge, indicating the potential to detect changes in frequency and magnitude of flood from satellite data. In regions where changes could be measured with sufficient satellite images, 29% showed an increase in water surface area in the flood plain, 41% showed a decrease, and 30% showed small or no changes.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detectability of variation in river flood from satellite images\",\"authors\":\"Y. Hirabayashi, Haireti Alifu, Dai Yamazaki, ‪Gennadii Donchyts, Yuki Kimura\",\"doi\":\"10.3178/hrl.15.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floods are major natural disasters that have considerable consequences worldwide. As the frequency and magnitude of flooding are expected to be affected by ongoing climate change, understanding their past changes is important for developing adequate adaptation measures. However, the limited spatiotemporal coverage of flood gauges hinders detection of changes in flooding, particularly in poorly gauged regions. Here, we propose a method using surface water data of river floodplain inundation as a proxy of the magnitude and frequency of flooding. Surface water data − Aqua Monitor which represented the probability linear trend changes in land and water surface area based on 30-m Landsat images between 1984–2000 and 2000–2013 was used in this study. The changes in water surface area over the floodplain obtained from Aqua Monitor showed high correspondence with historical trends observed or simulated annual maximum daily discharge, indicating the potential to detect changes in frequency and magnitude of flood from satellite data. In regions where changes could be measured with sufficient satellite images, 29% showed an increase in water surface area in the flood plain, 41% showed a decrease, and 30% showed small or no changes.\",\"PeriodicalId\":13111,\"journal\":{\"name\":\"Hydrological Research Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3178/hrl.15.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.15.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

洪水是一种严重的自然灾害,在世界范围内造成严重后果。由于洪水的频率和强度预计将受到持续气候变化的影响,了解其过去的变化对于制定适当的适应措施非常重要。然而,洪水测量仪有限的时空覆盖范围阻碍了对洪水变化的探测,特别是在测量差的地区。在这里,我们提出了一种使用河流泛滥平原的地表水数据作为洪水强度和频率的代理的方法。−Aqua Monitor基于1984-2000年和2000-2013年的30 m Landsat影像,代表陆地和水面面积的概率线性趋势变化。Aqua Monitor获得的洪泛平原水面面积变化与观测或模拟的年最大日流量的历史趋势高度对应,表明可以从卫星数据检测洪水频率和强度的变化。在有足够的卫星图像可以测量变化的地区,29%的地区洪泛区水面面积增加,41%的地区减少,30%的地区变化很小或没有变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detectability of variation in river flood from satellite images
Floods are major natural disasters that have considerable consequences worldwide. As the frequency and magnitude of flooding are expected to be affected by ongoing climate change, understanding their past changes is important for developing adequate adaptation measures. However, the limited spatiotemporal coverage of flood gauges hinders detection of changes in flooding, particularly in poorly gauged regions. Here, we propose a method using surface water data of river floodplain inundation as a proxy of the magnitude and frequency of flooding. Surface water data − Aqua Monitor which represented the probability linear trend changes in land and water surface area based on 30-m Landsat images between 1984–2000 and 2000–2013 was used in this study. The changes in water surface area over the floodplain obtained from Aqua Monitor showed high correspondence with historical trends observed or simulated annual maximum daily discharge, indicating the potential to detect changes in frequency and magnitude of flood from satellite data. In regions where changes could be measured with sufficient satellite images, 29% showed an increase in water surface area in the flood plain, 41% showed a decrease, and 30% showed small or no changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
期刊最新文献
Assessing characteristics and long-term trends in runoff and baseflow index in eastern Japan Uncertainty of internal climate variability in probabilistic flood simulations using d4PDF Developing a vertical quasi-two-dimensional surface-subsurface flow model using an approximation for hydraulic gradient Estimation of groundwater potential and aquifer hydraulic characteristics using resistivity and pumping test techniques in Makassar Indonesia Seasonal variation of physico-chemical characteristics in water of meromictic Lake Oigon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1