激光沉积金属材料螺旋端铣切削力预测的人工神经网络系统

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY TEHNICKI GLASNIK-TECHNICAL JOURNAL Pub Date : 2023-05-13 DOI:10.31803/tg-20230417145110
U. Župerl, M. Kovačič
{"title":"激光沉积金属材料螺旋端铣切削力预测的人工神经网络系统","authors":"U. Župerl, M. Kovačič","doi":"10.31803/tg-20230417145110","DOIUrl":null,"url":null,"abstract":"When machining difficult-to-cut metal materials often used to make sheet metal forming tools, excessive cutting force jumps often break the cutting edge. Therefore, this research developed a system of three neural network models to accurately predict the maximal cutting forces on the cutting edge in helical end milling of layered metal material. The model considers the different machinability of individual layers of a multilayer metal material. Comparing the neural force system with a linear regression model and experimental data shows that the system accurately predicts the cutting force when milling layered metal materials for a combination of specific cutting parameters. The predicted values of the cutting forces agree well with the measured values. The maximum error of the predicted cutting forces is 5.85% for all performed comparative tests. The obtained model accuracy is 98.65%.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network System for Predicting Cutting Forces in Helical-End Milling of Laser-Deposited Metal Materials\",\"authors\":\"U. Župerl, M. Kovačič\",\"doi\":\"10.31803/tg-20230417145110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When machining difficult-to-cut metal materials often used to make sheet metal forming tools, excessive cutting force jumps often break the cutting edge. Therefore, this research developed a system of three neural network models to accurately predict the maximal cutting forces on the cutting edge in helical end milling of layered metal material. The model considers the different machinability of individual layers of a multilayer metal material. Comparing the neural force system with a linear regression model and experimental data shows that the system accurately predicts the cutting force when milling layered metal materials for a combination of specific cutting parameters. The predicted values of the cutting forces agree well with the measured values. The maximum error of the predicted cutting forces is 5.85% for all performed comparative tests. The obtained model accuracy is 98.65%.\",\"PeriodicalId\":43419,\"journal\":{\"name\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31803/tg-20230417145110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20230417145110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当加工难切削的金属材料时,常用于制作钣金成形工具,过度的切削力跳跃常使切削刃断裂。为此,本研究建立了一个由三个神经网络模型组成的系统,以准确预测层状金属材料螺旋立铣削时刃口的最大切削力。该模型考虑了多层金属材料各层可加工性的不同。将神经力系统与线性回归模型和实验数据进行比较,结果表明,在特定切削参数组合下,神经力系统能够准确预测层状金属材料铣削时的切削力。切削力的预测值与实测值吻合较好。在所有进行的对比试验中,预测切削力的最大误差为5.85%。得到的模型精度为98.65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Neural Network System for Predicting Cutting Forces in Helical-End Milling of Laser-Deposited Metal Materials
When machining difficult-to-cut metal materials often used to make sheet metal forming tools, excessive cutting force jumps often break the cutting edge. Therefore, this research developed a system of three neural network models to accurately predict the maximal cutting forces on the cutting edge in helical end milling of layered metal material. The model considers the different machinability of individual layers of a multilayer metal material. Comparing the neural force system with a linear regression model and experimental data shows that the system accurately predicts the cutting force when milling layered metal materials for a combination of specific cutting parameters. The predicted values of the cutting forces agree well with the measured values. The maximum error of the predicted cutting forces is 5.85% for all performed comparative tests. The obtained model accuracy is 98.65%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
期刊最新文献
Standardization of Project Management Practices of Automotive Industry Suppliers Technical Characteristics of Incunabulum in Europe Face Detection and Recognition Using Raspberry PI Computer A Returnable Transport Item to Integrate Logistics 4.0 and Circular Economy in Pharma Supply Chains Modelling Freight Allocation and Transportation Lead-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1