铝试样剧烈塑性变形时的晶内位错行为及硬度变化

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY TEHNICKI GLASNIK-TECHNICAL JOURNAL Pub Date : 2023-05-13 DOI:10.31803/tg-20230424191508
Z. Keran, Amalija Horvatić Novak, Andrej Razumić, B. Runje, P. Piljek
{"title":"铝试样剧烈塑性变形时的晶内位错行为及硬度变化","authors":"Z. Keran, Amalija Horvatić Novak, Andrej Razumić, B. Runje, P. Piljek","doi":"10.31803/tg-20230424191508","DOIUrl":null,"url":null,"abstract":"The presence of dislocations significantly modifies the mechanical properties of crystalline solids. Severe plastic deformation (SPD) and the most used SPD process – the Equal Channel Angular Pressing (ECAP), affect the multiplication and localized accumulation of dislocations. This research is related to the observation of dislocation pile-up and significant reduction of the crystalline grain size caused by severe deformations in the ECAP process of the widely used aluminium material (Al 99.5%). Because of its lightweight, the application of Al 99.5 % can pose a challenge for the aviation and space industry, especially since its mechanical properties limit its application. Improving these mechanical properties can extend its applicability in cases of demanding constructions as well as influence the final product cost. As a confirmation of SPD in-fluence on mechanical properties, material hardness has been examined and described. Dislocation monitoring is enabled using the light and electron microscopy and AFM (Atomic Force Microscope) device. A numerical simulation of the Equal Channel Angular Pressing process using the ABAQUS software package determined the representative area of the most severe deformation.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Crystal Dislocation Behaviour and Hardness Changes in the Case of Severe Plastic Deformation of Aluminium Samples\",\"authors\":\"Z. Keran, Amalija Horvatić Novak, Andrej Razumić, B. Runje, P. Piljek\",\"doi\":\"10.31803/tg-20230424191508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of dislocations significantly modifies the mechanical properties of crystalline solids. Severe plastic deformation (SPD) and the most used SPD process – the Equal Channel Angular Pressing (ECAP), affect the multiplication and localized accumulation of dislocations. This research is related to the observation of dislocation pile-up and significant reduction of the crystalline grain size caused by severe deformations in the ECAP process of the widely used aluminium material (Al 99.5%). Because of its lightweight, the application of Al 99.5 % can pose a challenge for the aviation and space industry, especially since its mechanical properties limit its application. Improving these mechanical properties can extend its applicability in cases of demanding constructions as well as influence the final product cost. As a confirmation of SPD in-fluence on mechanical properties, material hardness has been examined and described. Dislocation monitoring is enabled using the light and electron microscopy and AFM (Atomic Force Microscope) device. A numerical simulation of the Equal Channel Angular Pressing process using the ABAQUS software package determined the representative area of the most severe deformation.\",\"PeriodicalId\":43419,\"journal\":{\"name\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31803/tg-20230424191508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20230424191508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

位错的存在显著地改变了结晶固体的力学性能。严重塑性变形(SPD)和最常用的SPD工艺——等通道角挤压(ECAP)会影响位错的增殖和局部积累。本研究涉及到广泛应用的铝材料(Al 99.5%)在ECAP过程中由于剧烈变形导致的位错堆积和晶粒尺寸的显著减小。由于其轻量化,99.5% Al的应用可能对航空航天工业构成挑战,特别是因为它的机械性能限制了它的应用。提高这些力学性能可以扩大其在苛刻结构情况下的适用性,并影响最终产品成本。为了证实SPD对机械性能的影响,对材料的硬度进行了测试和描述。位错监测是使用光学和电子显微镜和AFM(原子力显微镜)设备实现的。利用ABAQUS软件对等道角压成形过程进行数值模拟,确定了变形最严重的代表区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-Crystal Dislocation Behaviour and Hardness Changes in the Case of Severe Plastic Deformation of Aluminium Samples
The presence of dislocations significantly modifies the mechanical properties of crystalline solids. Severe plastic deformation (SPD) and the most used SPD process – the Equal Channel Angular Pressing (ECAP), affect the multiplication and localized accumulation of dislocations. This research is related to the observation of dislocation pile-up and significant reduction of the crystalline grain size caused by severe deformations in the ECAP process of the widely used aluminium material (Al 99.5%). Because of its lightweight, the application of Al 99.5 % can pose a challenge for the aviation and space industry, especially since its mechanical properties limit its application. Improving these mechanical properties can extend its applicability in cases of demanding constructions as well as influence the final product cost. As a confirmation of SPD in-fluence on mechanical properties, material hardness has been examined and described. Dislocation monitoring is enabled using the light and electron microscopy and AFM (Atomic Force Microscope) device. A numerical simulation of the Equal Channel Angular Pressing process using the ABAQUS software package determined the representative area of the most severe deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
期刊最新文献
Standardization of Project Management Practices of Automotive Industry Suppliers Technical Characteristics of Incunabulum in Europe Face Detection and Recognition Using Raspberry PI Computer A Returnable Transport Item to Integrate Logistics 4.0 and Circular Economy in Pharma Supply Chains Modelling Freight Allocation and Transportation Lead-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1