{"title":"假新闻检测系统:BERT和Boosting算法的实现","authors":"Raquiba Sultana, T. Nishino","doi":"10.29007/d931","DOIUrl":null,"url":null,"abstract":"On social media, false information can proliferate quickly and cause big issues. To minimize the harm caused by false information, it is essential to comprehend its sensitive nature and content. To achieve this, it is necessary to first identify the characteristics of information. To identify false information on the internet, we suggest an ensemble model based on transformers in this paper. First, various text classification tasks were carried out to understand the content of false and true news on Covid-19. The proposed hybrid ensemble learning model used the results. The results of our analysis were encouraging, demonstrating that the suggested system can identify false information on social media. All the classification tasks were validated and shows outstanding results. The final model showed excellent accuracy (0.99) and F1 score (0.99). The Receiver Operating Character- istics (ROC) curve showed that the true-positive rate of the data in this model was close to one, and the AUC (Area Under The Curve) score was also very high at 0.99. Thus, it was shown that the suggested model was effective at identifying false information online.","PeriodicalId":93549,"journal":{"name":"EPiC series in computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fake News Detection System: An implementation of BERT and Boosting Algorithm\",\"authors\":\"Raquiba Sultana, T. Nishino\",\"doi\":\"10.29007/d931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On social media, false information can proliferate quickly and cause big issues. To minimize the harm caused by false information, it is essential to comprehend its sensitive nature and content. To achieve this, it is necessary to first identify the characteristics of information. To identify false information on the internet, we suggest an ensemble model based on transformers in this paper. First, various text classification tasks were carried out to understand the content of false and true news on Covid-19. The proposed hybrid ensemble learning model used the results. The results of our analysis were encouraging, demonstrating that the suggested system can identify false information on social media. All the classification tasks were validated and shows outstanding results. The final model showed excellent accuracy (0.99) and F1 score (0.99). The Receiver Operating Character- istics (ROC) curve showed that the true-positive rate of the data in this model was close to one, and the AUC (Area Under The Curve) score was also very high at 0.99. Thus, it was shown that the suggested model was effective at identifying false information online.\",\"PeriodicalId\":93549,\"journal\":{\"name\":\"EPiC series in computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPiC series in computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/d931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC series in computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/d931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fake News Detection System: An implementation of BERT and Boosting Algorithm
On social media, false information can proliferate quickly and cause big issues. To minimize the harm caused by false information, it is essential to comprehend its sensitive nature and content. To achieve this, it is necessary to first identify the characteristics of information. To identify false information on the internet, we suggest an ensemble model based on transformers in this paper. First, various text classification tasks were carried out to understand the content of false and true news on Covid-19. The proposed hybrid ensemble learning model used the results. The results of our analysis were encouraging, demonstrating that the suggested system can identify false information on social media. All the classification tasks were validated and shows outstanding results. The final model showed excellent accuracy (0.99) and F1 score (0.99). The Receiver Operating Character- istics (ROC) curve showed that the true-positive rate of the data in this model was close to one, and the AUC (Area Under The Curve) score was also very high at 0.99. Thus, it was shown that the suggested model was effective at identifying false information online.