{"title":"液态CsIO3与多晶UO2固体表面的相互作用","authors":"H. Ishii, Y. Ohishi, H. Muta, M. Uno, K. Kurosaki","doi":"10.3327/taesj.j19.017","DOIUrl":null,"url":null,"abstract":"Understanding the behavior of melted volatile fission products ( FPs ) on the fuel contributes to the precise assessment of the release behaviour during a severe nuclear accident. A previous study revealed that liquid CsI shows abnormally high wettability with measured contact angles of almost zero degrees against the polycrystalline UO 2 solid surface. [ K. Kurosaki et al., Sci. Rep. 7, Article number: 11449 ( 2017 ) . ] . In this study, we focus on the melting behavior of CsIO 3 and revealed that liquid CsIO 3 also shows high wettability on the polycrystalline UO 2 solid surface. However, after melting, CsIO 3 decomposed and only Cs reacted with the polycrystalline UO 2 solid surface and I was only ab-sorbed on the solid surface. When the CsI had melted on the polycrystalline UO 2 solid surface, both Cs and I were able to penetrate inside the UO 2 pellets. In short, when Cs and I exist as CsIO 3 , Cs and I will be separately released during severe accidents. These findings suggest that the release mecha nisms of Cs and I could be strongly affected by the chemical species in the irradiated fuels.","PeriodicalId":55893,"journal":{"name":"Transactions of the Atomic Energy Society of Japan","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of Liquid CsIO3 with a Polycrystalline UO2 Solid Surface\",\"authors\":\"H. Ishii, Y. Ohishi, H. Muta, M. Uno, K. Kurosaki\",\"doi\":\"10.3327/taesj.j19.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the behavior of melted volatile fission products ( FPs ) on the fuel contributes to the precise assessment of the release behaviour during a severe nuclear accident. A previous study revealed that liquid CsI shows abnormally high wettability with measured contact angles of almost zero degrees against the polycrystalline UO 2 solid surface. [ K. Kurosaki et al., Sci. Rep. 7, Article number: 11449 ( 2017 ) . ] . In this study, we focus on the melting behavior of CsIO 3 and revealed that liquid CsIO 3 also shows high wettability on the polycrystalline UO 2 solid surface. However, after melting, CsIO 3 decomposed and only Cs reacted with the polycrystalline UO 2 solid surface and I was only ab-sorbed on the solid surface. When the CsI had melted on the polycrystalline UO 2 solid surface, both Cs and I were able to penetrate inside the UO 2 pellets. In short, when Cs and I exist as CsIO 3 , Cs and I will be separately released during severe accidents. These findings suggest that the release mecha nisms of Cs and I could be strongly affected by the chemical species in the irradiated fuels.\",\"PeriodicalId\":55893,\"journal\":{\"name\":\"Transactions of the Atomic Energy Society of Japan\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Atomic Energy Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3327/taesj.j19.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Atomic Energy Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3327/taesj.j19.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
了解熔化的挥发性裂变产物(FPs)在燃料上的行为有助于精确评估严重核事故中的释放行为。先前的一项研究表明,液态CsI与多晶uo2固体表面的接触角几乎为零,显示出异常高的润湿性。[K. Kurosaki et al.], Sci。提案7,文号:11449(2017)。] . 在本研究中,我们重点研究了csio3的熔融行为,发现液态csio3在多晶uo2固体表面也表现出很高的润湿性。而熔融后csio3分解,只有Cs与多晶uo2固体表面反应,I仅在固体表面被吸收。当CsI在多晶UO 2固体表面熔化时,Cs和I都能够穿透UO 2颗粒内部。简而言之,当Cs和我作为CsIO 3存在时,当发生严重事故时,Cs和我将被分开释放。这些发现表明,辐照燃料中的化学物质可能会强烈影响Cs和I的释放机制。
Interaction of Liquid CsIO3 with a Polycrystalline UO2 Solid Surface
Understanding the behavior of melted volatile fission products ( FPs ) on the fuel contributes to the precise assessment of the release behaviour during a severe nuclear accident. A previous study revealed that liquid CsI shows abnormally high wettability with measured contact angles of almost zero degrees against the polycrystalline UO 2 solid surface. [ K. Kurosaki et al., Sci. Rep. 7, Article number: 11449 ( 2017 ) . ] . In this study, we focus on the melting behavior of CsIO 3 and revealed that liquid CsIO 3 also shows high wettability on the polycrystalline UO 2 solid surface. However, after melting, CsIO 3 decomposed and only Cs reacted with the polycrystalline UO 2 solid surface and I was only ab-sorbed on the solid surface. When the CsI had melted on the polycrystalline UO 2 solid surface, both Cs and I were able to penetrate inside the UO 2 pellets. In short, when Cs and I exist as CsIO 3 , Cs and I will be separately released during severe accidents. These findings suggest that the release mecha nisms of Cs and I could be strongly affected by the chemical species in the irradiated fuels.