D. Chebykin, H. Heller, I. Saenko, G. Bartzsch, R. Endo, O. Volkova
{"title":"玻璃化转变的影响:B2O3的密度和导热系数测量","authors":"D. Chebykin, H. Heller, I. Saenko, G. Bartzsch, R. Endo, O. Volkova","doi":"10.32908/hthp.v49.801","DOIUrl":null,"url":null,"abstract":"The role of B2O3 as a fluxing agent for developing fluoride free fluxes has been accentuated in the recent years. Therefore, knowledge about thermophysical properties of the oxide are essential to find the optimal chemical composition of the mold fluxes. In the present study, the density and thermal conductivity of B2O3 were measured by means of the buoyancy method, the maximal bubble pressure (MBP) method and the hot-wire method in the temperature range of 295–1573 K. The results are discussed in the context of the chemical stability of the B2O3 as well as the effect of glass transition on the thermal conductivity. The density of the B2O3 decreases non-linearly with increasing temperature in the temperature range of 973–1573 K. The MBP method was successfully applied for the density measurements with a viscosity up to 91 Pa.s. The thermal conductivity of the B2O3 in the solid and molten states increases with increasing temperature. Based on the Kittel’s equation, the temperature dependence of the thermal conductivity through the glass transition temperature of B2O3 was discussed.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"49 1","pages":"125-142"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effect of glass transition: density and thermal conductivity measurements of B2O3\",\"authors\":\"D. Chebykin, H. Heller, I. Saenko, G. Bartzsch, R. Endo, O. Volkova\",\"doi\":\"10.32908/hthp.v49.801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of B2O3 as a fluxing agent for developing fluoride free fluxes has been accentuated in the recent years. Therefore, knowledge about thermophysical properties of the oxide are essential to find the optimal chemical composition of the mold fluxes. In the present study, the density and thermal conductivity of B2O3 were measured by means of the buoyancy method, the maximal bubble pressure (MBP) method and the hot-wire method in the temperature range of 295–1573 K. The results are discussed in the context of the chemical stability of the B2O3 as well as the effect of glass transition on the thermal conductivity. The density of the B2O3 decreases non-linearly with increasing temperature in the temperature range of 973–1573 K. The MBP method was successfully applied for the density measurements with a viscosity up to 91 Pa.s. The thermal conductivity of the B2O3 in the solid and molten states increases with increasing temperature. Based on the Kittel’s equation, the temperature dependence of the thermal conductivity through the glass transition temperature of B2O3 was discussed.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":\"49 1\",\"pages\":\"125-142\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v49.801\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v49.801","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Effect of glass transition: density and thermal conductivity measurements of B2O3
The role of B2O3 as a fluxing agent for developing fluoride free fluxes has been accentuated in the recent years. Therefore, knowledge about thermophysical properties of the oxide are essential to find the optimal chemical composition of the mold fluxes. In the present study, the density and thermal conductivity of B2O3 were measured by means of the buoyancy method, the maximal bubble pressure (MBP) method and the hot-wire method in the temperature range of 295–1573 K. The results are discussed in the context of the chemical stability of the B2O3 as well as the effect of glass transition on the thermal conductivity. The density of the B2O3 decreases non-linearly with increasing temperature in the temperature range of 973–1573 K. The MBP method was successfully applied for the density measurements with a viscosity up to 91 Pa.s. The thermal conductivity of the B2O3 in the solid and molten states increases with increasing temperature. Based on the Kittel’s equation, the temperature dependence of the thermal conductivity through the glass transition temperature of B2O3 was discussed.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.