石墨烯负载合成石墨/聚苯硫醚(PPS)复合材料的热力学性能

IF 1.1 4区 工程技术 Q4 Engineering High Temperatures-high Pressures Pub Date : 2021-01-01 DOI:10.32908/hthp.v50.1089
L. Altay, G. S. Tantug, H. Cekin, Y. Seki, M. Sarıkanat
{"title":"石墨烯负载合成石墨/聚苯硫醚(PPS)复合材料的热力学性能","authors":"L. Altay, G. S. Tantug, H. Cekin, Y. Seki, M. Sarıkanat","doi":"10.32908/hthp.v50.1089","DOIUrl":null,"url":null,"abstract":"Thermoplastics when they become thermally conductive, have a great potential to be used in thermal management applications due to their low cost, lightweight, and flexibility. Here, synthetic graphite and graphene are used as thermally conductive fillers to fabricate Polyphenylene Sulfide- (PPS) based composite materials with high thermal conductivity. Graphene and graphite added PPS composites were manufactured by using a twinscrew extruder and injection molding machine. Physical, thermal, mechanical, and morphological properties of the composites were investigated by several characterization methods including thermogravimetric analysis, differential scanning calorimetry, thermomechanical analysis, scanning electron microscopy, thermal diffusivity measurement, and tensile and flexural tests, The in-plane and through-plane thermal conductivity coefficient of graphene (5 wt. %) loaded synthetic graphite (40 wt. %)/PPS composites are greatly improved to 26.45 and 5.02 W/mK, respectively compared to that of neat PPS. The outstanding in-plane thermal conductivity of graphene loaded graphite/PPS composites is attributed to the formation of an effective thermal conductive pathway due to the alignment of the layered structure of graphene and graphite fillers in the flow direction.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and mechanical behavior of graphene loaded synthetic graphite/polyphenylene sulfide (PPS) composites\",\"authors\":\"L. Altay, G. S. Tantug, H. Cekin, Y. Seki, M. Sarıkanat\",\"doi\":\"10.32908/hthp.v50.1089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoplastics when they become thermally conductive, have a great potential to be used in thermal management applications due to their low cost, lightweight, and flexibility. Here, synthetic graphite and graphene are used as thermally conductive fillers to fabricate Polyphenylene Sulfide- (PPS) based composite materials with high thermal conductivity. Graphene and graphite added PPS composites were manufactured by using a twinscrew extruder and injection molding machine. Physical, thermal, mechanical, and morphological properties of the composites were investigated by several characterization methods including thermogravimetric analysis, differential scanning calorimetry, thermomechanical analysis, scanning electron microscopy, thermal diffusivity measurement, and tensile and flexural tests, The in-plane and through-plane thermal conductivity coefficient of graphene (5 wt. %) loaded synthetic graphite (40 wt. %)/PPS composites are greatly improved to 26.45 and 5.02 W/mK, respectively compared to that of neat PPS. The outstanding in-plane thermal conductivity of graphene loaded graphite/PPS composites is attributed to the formation of an effective thermal conductive pathway due to the alignment of the layered structure of graphene and graphite fillers in the flow direction.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v50.1089\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.1089","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

当热塑性塑料成为导热材料时,由于其低成本、轻量化和灵活性,在热管理应用中具有很大的潜力。本文以合成石墨和石墨烯为导热填料,制备高导热聚苯硫醚(PPS)基复合材料。采用双螺杆挤出机和注塑机制备了石墨烯和石墨添加PPS复合材料。通过几种表征方法,包括热重分析、差示扫描量热法、热力学分析、扫描电子显微镜、热扩散率测量、拉伸和弯曲测试,研究了复合材料的物理、热、力学和形态性能。石墨烯(5 wt. %)负载的合成石墨(40 wt. %)/PPS复合材料的面内和透面导热系数分别达到26.45 W/mK和5.02 W/mK。石墨烯负载的石墨/PPS复合材料具有出色的面内导热性,这是由于石墨烯和石墨填料的层状结构在流动方向上的对齐形成了有效的导热通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal and mechanical behavior of graphene loaded synthetic graphite/polyphenylene sulfide (PPS) composites
Thermoplastics when they become thermally conductive, have a great potential to be used in thermal management applications due to their low cost, lightweight, and flexibility. Here, synthetic graphite and graphene are used as thermally conductive fillers to fabricate Polyphenylene Sulfide- (PPS) based composite materials with high thermal conductivity. Graphene and graphite added PPS composites were manufactured by using a twinscrew extruder and injection molding machine. Physical, thermal, mechanical, and morphological properties of the composites were investigated by several characterization methods including thermogravimetric analysis, differential scanning calorimetry, thermomechanical analysis, scanning electron microscopy, thermal diffusivity measurement, and tensile and flexural tests, The in-plane and through-plane thermal conductivity coefficient of graphene (5 wt. %) loaded synthetic graphite (40 wt. %)/PPS composites are greatly improved to 26.45 and 5.02 W/mK, respectively compared to that of neat PPS. The outstanding in-plane thermal conductivity of graphene loaded graphite/PPS composites is attributed to the formation of an effective thermal conductive pathway due to the alignment of the layered structure of graphene and graphite fillers in the flow direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperatures-high Pressures
High Temperatures-high Pressures THERMODYNAMICS-MECHANICS
CiteScore
1.00
自引率
9.10%
发文量
6
期刊介绍: High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.
期刊最新文献
Experimental study of density, molar volume and surface tension of the liquid Ti-V system measured in electromagnetic levitation Viscosity of molten Cu–M alloys (M = Ni, Al) Determining the density of molten Y2O3 using an electrostatic levitation furnace in the International Space Station Structural, elastic and thermodynamic properties of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al FEM heat transfer modelling with tomography-based SiCf/SiC unit cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1