基于Fe3O4纳米流体体积吸收集热器热性能研究

IF 1.1 4区 工程技术 Q4 Engineering High Temperatures-high Pressures Pub Date : 2021-01-01 DOI:10.32908/hthp.v50.1061
J. Ham, Yunchan Shin, Honghyun Cho
{"title":"基于Fe3O4纳米流体体积吸收集热器热性能研究","authors":"J. Ham, Yunchan Shin, Honghyun Cho","doi":"10.32908/hthp.v50.1061","DOIUrl":null,"url":null,"abstract":"In this study, the characteristics of volumetric absorption for solar harvesting using a Fe3O4@polyacrylic acid (PAA) nanofluid (NF) are investigated experimentally. The concentration of the Fe3O4@PAA NF was varied from 0 to 0.2wt%, and its mass flow rate was set to 0.0025 and 0.005 kg/s. As a result, the average efficiency of the solar collector at the Fe3O4@PAA NF of 0.05wt% was the highest at the mass flow rates of 0.0025 kg/s and 0.005 kg/s and the improvement ratio of average efficiency was 1.15 and 1.19, respectively, compared to water. The collector performance of the solar thermal harvesting improved owing to the improvement in the solar absorption and heat transfer, as well as the uniform temperature at the receiver tube as the concentration of the Fe3O4@PAA NF increased to a concentration of 0.05wt%. However, the collector performance of the solar thermal harvesting decreased for the 0.05wt% Fe3O4@PAA NF because of the increase in heat loss by the non-uniform temperature at the receiver tube and heat transfer. The increase in mass flow rate can reduce the heat loss by the decrease in temperature in the receiver tube; consequently, the efficiency of the solar collector using NFs is improved.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance of solar collector based on volumetric absorption harvesting method using Fe3O4 nanofluid\",\"authors\":\"J. Ham, Yunchan Shin, Honghyun Cho\",\"doi\":\"10.32908/hthp.v50.1061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the characteristics of volumetric absorption for solar harvesting using a Fe3O4@polyacrylic acid (PAA) nanofluid (NF) are investigated experimentally. The concentration of the Fe3O4@PAA NF was varied from 0 to 0.2wt%, and its mass flow rate was set to 0.0025 and 0.005 kg/s. As a result, the average efficiency of the solar collector at the Fe3O4@PAA NF of 0.05wt% was the highest at the mass flow rates of 0.0025 kg/s and 0.005 kg/s and the improvement ratio of average efficiency was 1.15 and 1.19, respectively, compared to water. The collector performance of the solar thermal harvesting improved owing to the improvement in the solar absorption and heat transfer, as well as the uniform temperature at the receiver tube as the concentration of the Fe3O4@PAA NF increased to a concentration of 0.05wt%. However, the collector performance of the solar thermal harvesting decreased for the 0.05wt% Fe3O4@PAA NF because of the increase in heat loss by the non-uniform temperature at the receiver tube and heat transfer. The increase in mass flow rate can reduce the heat loss by the decrease in temperature in the receiver tube; consequently, the efficiency of the solar collector using NFs is improved.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v50.1061\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.1061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,实验研究了Fe3O4@polyacrylic酸(PAA)纳米流体(NF)的体积吸收特性。Fe3O4@PAA NF的浓度为0 ~ 0.2wt%,质量流量分别为0.0025和0.005 kg/s。结果表明,当质量流量为0.0025 kg/s和0.005 kg/s时,太阳能集热器在Fe3O4@PAA NF下的平均效率最高,为0.05wt%,平均效率比水分别提高1.15和1.19。当Fe3O4@PAA纳滤膜的浓度增加到0.05wt%时,由于太阳能吸收和传热的改善以及接收管温度的均匀性,太阳能热收集的集热器性能得到改善。然而,在0.05wt% Fe3O4@PAA NF时,由于接收管温度不均匀和传热导致热损失增加,太阳能热收集的集热器性能下降。质量流量的增加可以通过降低接收管内温度来减少热损失;因此,利用NFs提高了太阳能集热器的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal performance of solar collector based on volumetric absorption harvesting method using Fe3O4 nanofluid
In this study, the characteristics of volumetric absorption for solar harvesting using a Fe3O4@polyacrylic acid (PAA) nanofluid (NF) are investigated experimentally. The concentration of the Fe3O4@PAA NF was varied from 0 to 0.2wt%, and its mass flow rate was set to 0.0025 and 0.005 kg/s. As a result, the average efficiency of the solar collector at the Fe3O4@PAA NF of 0.05wt% was the highest at the mass flow rates of 0.0025 kg/s and 0.005 kg/s and the improvement ratio of average efficiency was 1.15 and 1.19, respectively, compared to water. The collector performance of the solar thermal harvesting improved owing to the improvement in the solar absorption and heat transfer, as well as the uniform temperature at the receiver tube as the concentration of the Fe3O4@PAA NF increased to a concentration of 0.05wt%. However, the collector performance of the solar thermal harvesting decreased for the 0.05wt% Fe3O4@PAA NF because of the increase in heat loss by the non-uniform temperature at the receiver tube and heat transfer. The increase in mass flow rate can reduce the heat loss by the decrease in temperature in the receiver tube; consequently, the efficiency of the solar collector using NFs is improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperatures-high Pressures
High Temperatures-high Pressures THERMODYNAMICS-MECHANICS
CiteScore
1.00
自引率
9.10%
发文量
6
期刊介绍: High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.
期刊最新文献
Experimental study of density, molar volume and surface tension of the liquid Ti-V system measured in electromagnetic levitation Viscosity of molten Cu–M alloys (M = Ni, Al) Determining the density of molten Y2O3 using an electrostatic levitation furnace in the International Space Station Structural, elastic and thermodynamic properties of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al FEM heat transfer modelling with tomography-based SiCf/SiC unit cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1