由改性扰动硬三聚体链状态方程研究生物柴油燃料的热物理性质

IF 1.1 4区 工程技术 Q4 Engineering High Temperatures-high Pressures Pub Date : 2022-01-01 DOI:10.32908/hthp.v51.1099
Negar Parvizi, F. Akbari, M. Alavianmehr, D. Mohammad-Aghaie
{"title":"由改性扰动硬三聚体链状态方程研究生物柴油燃料的热物理性质","authors":"Negar Parvizi, F. Akbari, M. Alavianmehr, D. Mohammad-Aghaie","doi":"10.32908/hthp.v51.1099","DOIUrl":null,"url":null,"abstract":"In the present study, a modified version of the perturbed hard trimer chain equation of state was employed to predict thermophysical properties of fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE) systems. The thermophysical properties in question are liquid density, vapor pressure, heat capacity, viscosity and thermal conductivity. The predictive power of the model has been assessed by calculating the aforementioned thermophysical properties and comparing with experimental ones as well as other models. Typically, the overall average absolute relative deviation (AARD in %) of the predicted densities for 1665 data points was found to be 2.57%. Simplicity and good agreement between the experimental data and those calculated from the present model, are the reasons for applicability of proposed model with sufficient accuracy for engineering applications. The capability of this new equation of state in predicting both thermodynamic and transport properties simultaneously with good accuracies is really prominent.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermophysical properties of biodiesel fuels from modified perturbed hard trimer chain equation of state\",\"authors\":\"Negar Parvizi, F. Akbari, M. Alavianmehr, D. Mohammad-Aghaie\",\"doi\":\"10.32908/hthp.v51.1099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, a modified version of the perturbed hard trimer chain equation of state was employed to predict thermophysical properties of fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE) systems. The thermophysical properties in question are liquid density, vapor pressure, heat capacity, viscosity and thermal conductivity. The predictive power of the model has been assessed by calculating the aforementioned thermophysical properties and comparing with experimental ones as well as other models. Typically, the overall average absolute relative deviation (AARD in %) of the predicted densities for 1665 data points was found to be 2.57%. Simplicity and good agreement between the experimental data and those calculated from the present model, are the reasons for applicability of proposed model with sufficient accuracy for engineering applications. The capability of this new equation of state in predicting both thermodynamic and transport properties simultaneously with good accuracies is really prominent.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v51.1099\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v51.1099","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用一种改进的微扰硬三聚链状态方程来预测脂肪酸甲酯(FAME)和脂肪酸乙酯(FAEE)体系的热物理性质。所讨论的热物理性质是液体密度、蒸汽压、热容、粘度和导热系数。通过计算上述热物性,并与实验值及其他模型进行比较,对模型的预测能力进行了评价。在典型情况下,对1665个数据点的预测密度的总体平均绝对相对偏差(AARD in %)为2.57%。该模型的计算结果与实验数据吻合较好,计算结果简单,具有较高的工程应用精度。这种新的状态方程能够同时准确地预测热力学和输运性质,这是非常突出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermophysical properties of biodiesel fuels from modified perturbed hard trimer chain equation of state
In the present study, a modified version of the perturbed hard trimer chain equation of state was employed to predict thermophysical properties of fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE) systems. The thermophysical properties in question are liquid density, vapor pressure, heat capacity, viscosity and thermal conductivity. The predictive power of the model has been assessed by calculating the aforementioned thermophysical properties and comparing with experimental ones as well as other models. Typically, the overall average absolute relative deviation (AARD in %) of the predicted densities for 1665 data points was found to be 2.57%. Simplicity and good agreement between the experimental data and those calculated from the present model, are the reasons for applicability of proposed model with sufficient accuracy for engineering applications. The capability of this new equation of state in predicting both thermodynamic and transport properties simultaneously with good accuracies is really prominent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperatures-high Pressures
High Temperatures-high Pressures THERMODYNAMICS-MECHANICS
CiteScore
1.00
自引率
9.10%
发文量
6
期刊介绍: High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.
期刊最新文献
Experimental study of density, molar volume and surface tension of the liquid Ti-V system measured in electromagnetic levitation Viscosity of molten Cu–M alloys (M = Ni, Al) Determining the density of molten Y2O3 using an electrostatic levitation furnace in the International Space Station Structural, elastic and thermodynamic properties of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al FEM heat transfer modelling with tomography-based SiCf/SiC unit cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1