二元混合物中液-气临界点的预测方法:几何- eos模型

IF 1.1 4区 工程技术 Q4 Engineering High Temperatures-high Pressures Pub Date : 2022-01-01 DOI:10.32908/hthp.v51.1125
H. Grine, H. Madani
{"title":"二元混合物中液-气临界点的预测方法:几何- eos模型","authors":"H. Grine, H. Madani","doi":"10.32908/hthp.v51.1125","DOIUrl":null,"url":null,"abstract":"A new method for predicting the Liquid- Vapor critical point of binary mixture, is presented, which is based in geometrical distances. Actually, the method is based on the minimization of the distance between the experimental and calculated values of the critical temperatures and critical pressures. The SRK and PR equations of state along with classical mixing rules of van der Waals were used as thermodynamic models to calculate the critical point of a given mixture. The proposed method requires that the mixture parameters a, b, and the covolume ε = b/v of each equation of state be determined at each iteration by solving the resulting cubic equation. For nine binary mixtures containing: hydrocarbon derivatives, carbon dioxide and alcohols are studied. The AARE of the calculated values is about 0.86% for critical temperature and 2.07% for critical pressure. Good agreements are found between the calculated results and experimental data. The technique is a general purpose one and can be applied in connection with other thermodynamic models.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for prediction of liquid-vapor critical points in binary mixtures: geometrical-EOS model\",\"authors\":\"H. Grine, H. Madani\",\"doi\":\"10.32908/hthp.v51.1125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for predicting the Liquid- Vapor critical point of binary mixture, is presented, which is based in geometrical distances. Actually, the method is based on the minimization of the distance between the experimental and calculated values of the critical temperatures and critical pressures. The SRK and PR equations of state along with classical mixing rules of van der Waals were used as thermodynamic models to calculate the critical point of a given mixture. The proposed method requires that the mixture parameters a, b, and the covolume ε = b/v of each equation of state be determined at each iteration by solving the resulting cubic equation. For nine binary mixtures containing: hydrocarbon derivatives, carbon dioxide and alcohols are studied. The AARE of the calculated values is about 0.86% for critical temperature and 2.07% for critical pressure. Good agreements are found between the calculated results and experimental data. The technique is a general purpose one and can be applied in connection with other thermodynamic models.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v51.1125\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v51.1125","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于几何距离预测二元混合物液汽临界点的新方法。实际上,该方法是基于临界温度和临界压力的实验值与计算值之间的距离最小。采用SRK和PR状态方程和经典的范德华混合规则作为热力学模型,计算了给定混合物的临界点。该方法要求在每次迭代时,通过求解得到的三次方程来确定每个状态方程的混合参数a、b和协体积ε = b/v。对含烃衍生物、二氧化碳和醇的九种二元混合物进行了研究。计算值的AARE在临界温度和临界压力下分别为0.86%和2.07%。计算结果与实验数据吻合较好。该方法具有通用性,可与其它热力学模型结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Method for prediction of liquid-vapor critical points in binary mixtures: geometrical-EOS model
A new method for predicting the Liquid- Vapor critical point of binary mixture, is presented, which is based in geometrical distances. Actually, the method is based on the minimization of the distance between the experimental and calculated values of the critical temperatures and critical pressures. The SRK and PR equations of state along with classical mixing rules of van der Waals were used as thermodynamic models to calculate the critical point of a given mixture. The proposed method requires that the mixture parameters a, b, and the covolume ε = b/v of each equation of state be determined at each iteration by solving the resulting cubic equation. For nine binary mixtures containing: hydrocarbon derivatives, carbon dioxide and alcohols are studied. The AARE of the calculated values is about 0.86% for critical temperature and 2.07% for critical pressure. Good agreements are found between the calculated results and experimental data. The technique is a general purpose one and can be applied in connection with other thermodynamic models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperatures-high Pressures
High Temperatures-high Pressures THERMODYNAMICS-MECHANICS
CiteScore
1.00
自引率
9.10%
发文量
6
期刊介绍: High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.
期刊最新文献
Experimental study of density, molar volume and surface tension of the liquid Ti-V system measured in electromagnetic levitation Viscosity of molten Cu–M alloys (M = Ni, Al) Determining the density of molten Y2O3 using an electrostatic levitation furnace in the International Space Station Structural, elastic and thermodynamic properties of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al FEM heat transfer modelling with tomography-based SiCf/SiC unit cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1