高维数据中基于距离的分类器误分类概率估计

IF 0.5 4区 数学 Q3 MATHEMATICS Hiroshima Mathematical Journal Pub Date : 2019-01-01 DOI:10.32917/HMJ/1564106544
Hiroki Watanabe, Masashi Hyodo, Yuki Yamada, T. Seo
{"title":"高维数据中基于距离的分类器误分类概率估计","authors":"Hiroki Watanabe, Masashi Hyodo, Yuki Yamada, T. Seo","doi":"10.32917/HMJ/1564106544","DOIUrl":null,"url":null,"abstract":"The Euclidean distance-based classifier is often used to classify an observation into one of several populations in high-dimensional data. One of the most important problems in discriminant analysis is estimating the probability of misclassification. In this paper, we propose a consistent estimator of misclassification probabilities when the dimension of the vector, p, may exceed the sample size, N , and the underlying distribution need not necessarily be normal. A new estimator of quadratic form is also obtained as a by-product. Finally, we numerically verify the high accuracy of our proposed estimator in finite sample applications, inclusive of high-dimensional scenarios. AMS 2000 subject classification: 62H30, 41A60.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimation of misclassification probability for a distance-based classifier in high-dimensional data\",\"authors\":\"Hiroki Watanabe, Masashi Hyodo, Yuki Yamada, T. Seo\",\"doi\":\"10.32917/HMJ/1564106544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Euclidean distance-based classifier is often used to classify an observation into one of several populations in high-dimensional data. One of the most important problems in discriminant analysis is estimating the probability of misclassification. In this paper, we propose a consistent estimator of misclassification probabilities when the dimension of the vector, p, may exceed the sample size, N , and the underlying distribution need not necessarily be normal. A new estimator of quadratic form is also obtained as a by-product. Finally, we numerically verify the high accuracy of our proposed estimator in finite sample applications, inclusive of high-dimensional scenarios. AMS 2000 subject classification: 62H30, 41A60.\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1564106544\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1564106544","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

基于欧几里得距离的分类器通常用于将观测值分类为高维数据中的几个种群之一。判别分析中最重要的问题之一是估计错误分类的概率。在本文中,我们提出了一个误分类概率的一致估计量,当向量的维数p可能超过样本量N,并且底层分布不一定是正态分布时。作为副产物,得到了一个新的二次型估计量。最后,我们在有限样本应用(包括高维场景)中数值验证了我们提出的估计器的高精度。AMS 2000学科分类:62H30, 41A60。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of misclassification probability for a distance-based classifier in high-dimensional data
The Euclidean distance-based classifier is often used to classify an observation into one of several populations in high-dimensional data. One of the most important problems in discriminant analysis is estimating the probability of misclassification. In this paper, we propose a consistent estimator of misclassification probabilities when the dimension of the vector, p, may exceed the sample size, N , and the underlying distribution need not necessarily be normal. A new estimator of quadratic form is also obtained as a by-product. Finally, we numerically verify the high accuracy of our proposed estimator in finite sample applications, inclusive of high-dimensional scenarios. AMS 2000 subject classification: 62H30, 41A60.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
期刊最新文献
Hartogs’ analyticity theorem for C2-mappings and maximum principle for q-convex functions On a class of fully nonlinear elliptic equations containing gradient terms on compact almost Hermitian manifolds An ℓ2,0-norm constrained matrix optimization via extended discrete first-order algorithms Generalized solution of the double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces On meromorphic functions sharing three one-point or two-point sets CM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1