工资曲线,再一次与感觉:贝叶斯模型平均Heckit模型

R. Gonzales Martínez
{"title":"工资曲线,再一次与感觉:贝叶斯模型平均Heckit模型","authors":"R. Gonzales Martínez","doi":"10.33119/erfin.2018.3.2.1","DOIUrl":null,"url":null,"abstract":"The sensitivity of the wage curve to sample-selection and model uncertainty was evaluated with Bayesian methods. More than 8000 Heckit wage curves were estimated using data from the 2017 household survey of Bolivia. After averaging the estimates with the posterior probability of each model being true, the wage curve elasticity in Bolivia is close to -0.01. This result suggests that in this country the wage curve is inelastic and does not follow the international statistical regularity of wage curves. ","PeriodicalId":33177,"journal":{"name":"Econometric Research in Finance","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Wage Curve, Once More with Feeling: Bayesian Model Averaging of Heckit Models\",\"authors\":\"R. Gonzales Martínez\",\"doi\":\"10.33119/erfin.2018.3.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sensitivity of the wage curve to sample-selection and model uncertainty was evaluated with Bayesian methods. More than 8000 Heckit wage curves were estimated using data from the 2017 household survey of Bolivia. After averaging the estimates with the posterior probability of each model being true, the wage curve elasticity in Bolivia is close to -0.01. This result suggests that in this country the wage curve is inelastic and does not follow the international statistical regularity of wage curves. \",\"PeriodicalId\":33177,\"journal\":{\"name\":\"Econometric Research in Finance\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Research in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33119/erfin.2018.3.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Research in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33119/erfin.2018.3.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用贝叶斯方法评价了工资曲线对样本选择和模型不确定性的敏感性。根据2017年玻利维亚家庭调查的数据,估计了8000多条赫基特工资曲线。在对每个模型的后验概率进行平均后,玻利维亚的工资曲线弹性接近于-0.01。这一结果表明,我国的工资曲线是非弹性的,不符合国际工资曲线的统计规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Wage Curve, Once More with Feeling: Bayesian Model Averaging of Heckit Models
The sensitivity of the wage curve to sample-selection and model uncertainty was evaluated with Bayesian methods. More than 8000 Heckit wage curves were estimated using data from the 2017 household survey of Bolivia. After averaging the estimates with the posterior probability of each model being true, the wage curve elasticity in Bolivia is close to -0.01. This result suggests that in this country the wage curve is inelastic and does not follow the international statistical regularity of wage curves. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
An Innovative Artificial Intelligence and Natural Language Processing Framework for Asset Price Forecasting Based on Islamic Finance: A Case Study of the Saudi Stock Market Effect of Real Estate News Sentiments on the Stock Returns of Swedbank and SEB Bank Corporate Tax Aggressiveness and Corporate Investment Expenditure in Nigeria and Ghana Integrated Reporting and Firm Value in the Nigerian and South African Oil and Gas Sector Predicting the Price of Crude Oil and its Fluctuations Using Computational Econometrics: Deep Learning, LSTM, and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1