{"title":"盖驱动三角腔内磁流体混合对流流动的数值研究","authors":"M. Uddin, Aki Farhana, M. A. Alim","doi":"10.3329/JNAME.V12I1.12910","DOIUrl":null,"url":null,"abstract":"In the present paper, the effect of magneto-hydrodynamic (MHD) on mixed convection flow within a lid-driven triangular cavity has been numerically investigated. The bottom wall of the cavity is considered as heated. Besides, the left and the inclined wall of the triangular cavity are assumed to be cool and adiabatic. The cooled wall of the cavity is moving up in the vertical direction. The developed mathematical model is governed by the coupled equations of continuity, momentum and energy to determine the fluid flow and heat transfer characteristics in the cavity as a function of Rayleigh number, Hartmann number and the cavity aspect ratio. The present numerical procedure adopted in this investigation yields consistent performance over a wide range of parameters Rayleigh number Ra (103-104), Prandtl number Pr (0.7 - 3) and Hartmann number Ha (5 - 50). The numerical results are presented in terms of stream functions, temperature profile and Nussult numbers. It is found that the streamlines, isotherms, average Nusselt number, average fluid bulk temperature and dimensionless temperature in the cavity strongly depend on the Rayleigh number, Hartmann number and Prandtl number.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2015-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V12I1.12910","citationCount":"4","resultStr":"{\"title\":\"Numerical study of magneto-hydrodynamic (MHD) mixed convection flow in a lid-driven triangular cavity\",\"authors\":\"M. Uddin, Aki Farhana, M. A. Alim\",\"doi\":\"10.3329/JNAME.V12I1.12910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, the effect of magneto-hydrodynamic (MHD) on mixed convection flow within a lid-driven triangular cavity has been numerically investigated. The bottom wall of the cavity is considered as heated. Besides, the left and the inclined wall of the triangular cavity are assumed to be cool and adiabatic. The cooled wall of the cavity is moving up in the vertical direction. The developed mathematical model is governed by the coupled equations of continuity, momentum and energy to determine the fluid flow and heat transfer characteristics in the cavity as a function of Rayleigh number, Hartmann number and the cavity aspect ratio. The present numerical procedure adopted in this investigation yields consistent performance over a wide range of parameters Rayleigh number Ra (103-104), Prandtl number Pr (0.7 - 3) and Hartmann number Ha (5 - 50). The numerical results are presented in terms of stream functions, temperature profile and Nussult numbers. It is found that the streamlines, isotherms, average Nusselt number, average fluid bulk temperature and dimensionless temperature in the cavity strongly depend on the Rayleigh number, Hartmann number and Prandtl number.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2015-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/JNAME.V12I1.12910\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V12I1.12910\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V12I1.12910","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical study of magneto-hydrodynamic (MHD) mixed convection flow in a lid-driven triangular cavity
In the present paper, the effect of magneto-hydrodynamic (MHD) on mixed convection flow within a lid-driven triangular cavity has been numerically investigated. The bottom wall of the cavity is considered as heated. Besides, the left and the inclined wall of the triangular cavity are assumed to be cool and adiabatic. The cooled wall of the cavity is moving up in the vertical direction. The developed mathematical model is governed by the coupled equations of continuity, momentum and energy to determine the fluid flow and heat transfer characteristics in the cavity as a function of Rayleigh number, Hartmann number and the cavity aspect ratio. The present numerical procedure adopted in this investigation yields consistent performance over a wide range of parameters Rayleigh number Ra (103-104), Prandtl number Pr (0.7 - 3) and Hartmann number Ha (5 - 50). The numerical results are presented in terms of stream functions, temperature profile and Nussult numbers. It is found that the streamlines, isotherms, average Nusselt number, average fluid bulk temperature and dimensionless temperature in the cavity strongly depend on the Rayleigh number, Hartmann number and Prandtl number.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.