{"title":"具有任意响应的光腔位移传感器的反设计与实现","authors":"Qianbo Lu, Qingxiong Xiao, Chengxiu Liu, Yinan Wang, Qixuan Zhu, Manzhang Xu, Xuewen Wang, Xiaoxu Wang, Wei Huang","doi":"10.29026/oea.2023.220018","DOIUrl":null,"url":null,"abstract":"Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis. A number of theories and methods have been successful in describing the optical response of a stratified optical cavity, while the inverse problem, especially the inverse design of a displacement sensitive cavity, remains a significant chal-lenge due to the cost of computation and comprehensive performance requirements. This paper reports a novel inverse design methodology combining the characteristic matrix method, mixed-discrete variables optimization algorithm, and Monte Carlo method-based tolerance analysis. The material characteristics are indexed to enable the mixed-discrete variables optimization, which yields considerable speed and efficiency improvements. This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response. Two entirely different light-displacement responses, including an asymmetric sawtooth-like response and a highly symmetric response, are dug out and experimentally achieved, which fully confirms the validity of the method. The compact Fabry-Perot cavities have a good balance between performance and feasibility, making them promising candidates for displacement transducers. More importantly, the proposed inverse design paves the way for a universal design of optical cavities, or even nanophotonic devices. of an cavity-based displacement transducer with arbitrary","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":"1 1","pages":""},"PeriodicalIF":15.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inverse design and realization of an optical cavity-based displacement transducer with arbitrary responses\",\"authors\":\"Qianbo Lu, Qingxiong Xiao, Chengxiu Liu, Yinan Wang, Qixuan Zhu, Manzhang Xu, Xuewen Wang, Xiaoxu Wang, Wei Huang\",\"doi\":\"10.29026/oea.2023.220018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis. A number of theories and methods have been successful in describing the optical response of a stratified optical cavity, while the inverse problem, especially the inverse design of a displacement sensitive cavity, remains a significant chal-lenge due to the cost of computation and comprehensive performance requirements. This paper reports a novel inverse design methodology combining the characteristic matrix method, mixed-discrete variables optimization algorithm, and Monte Carlo method-based tolerance analysis. The material characteristics are indexed to enable the mixed-discrete variables optimization, which yields considerable speed and efficiency improvements. This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response. Two entirely different light-displacement responses, including an asymmetric sawtooth-like response and a highly symmetric response, are dug out and experimentally achieved, which fully confirms the validity of the method. The compact Fabry-Perot cavities have a good balance between performance and feasibility, making them promising candidates for displacement transducers. More importantly, the proposed inverse design paves the way for a universal design of optical cavities, or even nanophotonic devices. of an cavity-based displacement transducer with arbitrary\",\"PeriodicalId\":19611,\"journal\":{\"name\":\"Opto-Electronic Advances\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Electronic Advances\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.29026/oea.2023.220018\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronic Advances","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.29026/oea.2023.220018","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Inverse design and realization of an optical cavity-based displacement transducer with arbitrary responses
Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis. A number of theories and methods have been successful in describing the optical response of a stratified optical cavity, while the inverse problem, especially the inverse design of a displacement sensitive cavity, remains a significant chal-lenge due to the cost of computation and comprehensive performance requirements. This paper reports a novel inverse design methodology combining the characteristic matrix method, mixed-discrete variables optimization algorithm, and Monte Carlo method-based tolerance analysis. The material characteristics are indexed to enable the mixed-discrete variables optimization, which yields considerable speed and efficiency improvements. This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response. Two entirely different light-displacement responses, including an asymmetric sawtooth-like response and a highly symmetric response, are dug out and experimentally achieved, which fully confirms the validity of the method. The compact Fabry-Perot cavities have a good balance between performance and feasibility, making them promising candidates for displacement transducers. More importantly, the proposed inverse design paves the way for a universal design of optical cavities, or even nanophotonic devices. of an cavity-based displacement transducer with arbitrary
期刊介绍:
Opto-Electronic Advances (OEA) is a distinguished scientific journal that has made significant strides since its inception in March 2018. Here's a collated summary of its key features and accomplishments:
Impact Factor and Ranking: OEA boasts an impressive Impact Factor of 14.1, which positions it within the Q1 quartiles of the Optics category. This high ranking indicates that the journal is among the top 25% of its field in terms of citation impact.
Open Access and Peer Review: As an open access journal, OEA ensures that research findings are freely available to the global scientific community, promoting wider dissemination and collaboration. It upholds rigorous academic standards through a peer review process, ensuring the quality and integrity of the published research.
Database Indexing: OEA's content is indexed in several prestigious databases, including the Science Citation Index (SCI), Engineering Index (EI), Scopus, Chemical Abstracts (CA), and the Index to Chinese Periodical Articles (ICI). This broad indexing facilitates easy access to the journal's articles by researchers worldwide.