使用无人驾驶飞机对斯瓦尔巴群岛Ny-Ålesund附近风场的案例研究

IF 1.9 4区 地球科学 Q3 ECOLOGY Polar Research Pub Date : 2022-01-01 DOI:10.33265/polar.v41.7884
M. Schön, I. Suomi, B. Altstädter, B. van Kesteren, Kjell zum Berge, A. Platis, B. Wehner, A. Lampert, J. Bange
{"title":"使用无人驾驶飞机对斯瓦尔巴群岛Ny-Ålesund附近风场的案例研究","authors":"M. Schön, I. Suomi, B. Altstädter, B. van Kesteren, Kjell zum Berge, A. Platis, B. Wehner, A. Lampert, J. Bange","doi":"10.33265/polar.v41.7884","DOIUrl":null,"url":null,"abstract":"The wind field in Arctic fjords is strongly influenced by glaciers, local orography and the interaction between sea and land. Ny-Ålesund, an important location for atmospheric research in the Arctic, is located in Kongsfjorden, a fjord with a complex local wind field that influences measurements in Ny-Ålesund. Using wind measurements from UAS (unmanned aircraft systems), ground measurements, radiosonde and reanalysis data, characteristic processes that determine the wind field around Ny-Ålesund are identified and analysed. UAS measurements and ground measurements show, as did previous studies, a south-east flow along Kongsfjorden, dominating the wind conditions in Ny-Ålesund. The wind measured by the UAS in a valley 1 km west of Ny-Ålesund differs from the wind measured at the ground in Ny-Ålesund. In this valley, we identify a small-scale catabatic flow from the south to south-west as the cause for this difference. Case studies show a backing (counterclockwise rotation with increasing altitude) of the wind direction close to the ground. A katabatic flow is measured near the ground, with a horizontal wind speed up to 5 m s-1. Both the larger-scale south-east flow along the fjord and the local katabatic flows lead to a highly variable wind field, so ground measurements and weather models alone give an incomplete picture. The comparison of UAS measurements, ground measurements and weather conditions analysis using a synoptic model is used to show that the effects measured in the case studies play a role in the Ny-Ålesund wind field in spring.","PeriodicalId":49684,"journal":{"name":"Polar Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Case studies of the wind field around Ny-Ålesund, Svalbard, using unmanned aircraft\",\"authors\":\"M. Schön, I. Suomi, B. Altstädter, B. van Kesteren, Kjell zum Berge, A. Platis, B. Wehner, A. Lampert, J. Bange\",\"doi\":\"10.33265/polar.v41.7884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wind field in Arctic fjords is strongly influenced by glaciers, local orography and the interaction between sea and land. Ny-Ålesund, an important location for atmospheric research in the Arctic, is located in Kongsfjorden, a fjord with a complex local wind field that influences measurements in Ny-Ålesund. Using wind measurements from UAS (unmanned aircraft systems), ground measurements, radiosonde and reanalysis data, characteristic processes that determine the wind field around Ny-Ålesund are identified and analysed. UAS measurements and ground measurements show, as did previous studies, a south-east flow along Kongsfjorden, dominating the wind conditions in Ny-Ålesund. The wind measured by the UAS in a valley 1 km west of Ny-Ålesund differs from the wind measured at the ground in Ny-Ålesund. In this valley, we identify a small-scale catabatic flow from the south to south-west as the cause for this difference. Case studies show a backing (counterclockwise rotation with increasing altitude) of the wind direction close to the ground. A katabatic flow is measured near the ground, with a horizontal wind speed up to 5 m s-1. Both the larger-scale south-east flow along the fjord and the local katabatic flows lead to a highly variable wind field, so ground measurements and weather models alone give an incomplete picture. The comparison of UAS measurements, ground measurements and weather conditions analysis using a synoptic model is used to show that the effects measured in the case studies play a role in the Ny-Ålesund wind field in spring.\",\"PeriodicalId\":49684,\"journal\":{\"name\":\"Polar Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.33265/polar.v41.7884\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33265/polar.v41.7884","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

北极峡湾的风场受冰川、当地地形和海陆相互作用的强烈影响。Ny-Ålesund是北极大气研究的重要地点,位于Kongsfjorden峡湾,该峡湾具有复杂的当地风场,影响Ny-Ålesund的测量。利用来自UAS(无人驾驶飞机系统)的风测量、地面测量、无线电探空仪和再分析数据,确定Ny-Ålesund周围风场的特征过程被识别和分析。正如之前的研究一样,无人机测量和地面测量显示,沿着Kongsfjorden的东南气流主导了Ny-Ålesund的风力条件。UAS在Ny-Ålesund以西1公里的山谷中测量到的风与在Ny-Ålesund的地面上测量到的风不同。在这个山谷中,我们发现了一个从南到西南的小规模的衰减流,这是造成这种差异的原因。案例研究表明,在接近地面的地方,风向发生了倒转(随着高度的增加,逆时针旋转)。在接近地面的地方测量斜降气流,水平风速可达5 m s-1。沿着峡湾的大规模东南气流和局部的倾斜气流都导致了一个高度可变的风场,因此地面测量和天气模型单独给出了一个不完整的画面。通过对UAS测量值、地面测量值和天气条件分析的比较,利用天气学模式表明,在实例研究中测量到的效应在Ny-Ålesund春季风场中发挥了作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Case studies of the wind field around Ny-Ålesund, Svalbard, using unmanned aircraft
The wind field in Arctic fjords is strongly influenced by glaciers, local orography and the interaction between sea and land. Ny-Ålesund, an important location for atmospheric research in the Arctic, is located in Kongsfjorden, a fjord with a complex local wind field that influences measurements in Ny-Ålesund. Using wind measurements from UAS (unmanned aircraft systems), ground measurements, radiosonde and reanalysis data, characteristic processes that determine the wind field around Ny-Ålesund are identified and analysed. UAS measurements and ground measurements show, as did previous studies, a south-east flow along Kongsfjorden, dominating the wind conditions in Ny-Ålesund. The wind measured by the UAS in a valley 1 km west of Ny-Ålesund differs from the wind measured at the ground in Ny-Ålesund. In this valley, we identify a small-scale catabatic flow from the south to south-west as the cause for this difference. Case studies show a backing (counterclockwise rotation with increasing altitude) of the wind direction close to the ground. A katabatic flow is measured near the ground, with a horizontal wind speed up to 5 m s-1. Both the larger-scale south-east flow along the fjord and the local katabatic flows lead to a highly variable wind field, so ground measurements and weather models alone give an incomplete picture. The comparison of UAS measurements, ground measurements and weather conditions analysis using a synoptic model is used to show that the effects measured in the case studies play a role in the Ny-Ålesund wind field in spring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polar Research
Polar Research 地学-地球科学综合
CiteScore
3.20
自引率
5.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Since 1982, Polar Research has been the international, peer-reviewed journal of the Norwegian Polar Institute, Norway''s central institution for research, environmental monitoring and mapping of the polar regions. Aiming to promote the exchange of scientific knowledge about the Arctic and Antarctic across disciplinary boundaries, Polar Research serves an international community of researchers and managers. As an open-access journal, Polar Research makes its contents freely available to the general public. Original primary research papers comprise the mainstay of Polar Research. Review articles, brief research notes, letters to the editor and book reviews are also included. Special issues are published from time to time. The scope of Polar Research encompasses research in all scientific disciplines relevant to the polar regions. These include, but are not limited to, the subfields of biology, ecology, geology, oceanography, glaciology and atmospheric science. Submissions from the social sciences and those focusing on polar management and policy issues are welcome. Contributions about Antarctica are particularly encouraged.
期刊最新文献
Some issues related to the Svalbardian tectonic event (Ellesmerian Orogeny) in Svalbard Drivers of spatio-temporal variations in summer surface water temperatures of Arctic Fennoscandian lakes (2000–21) The relationship between Antarctic sea-ice extent change and the main modes of sea-ice variability in austral winter Widespread exposure to Francisella tularensis in Rangifer tarandus in Canada and Alaska Polar vortex weakening and its impact on surface temperature in recent decades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1