利用ansys fluent对不同相对曲率半径弯道中发散墩流态进行数值模拟

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY Engineering Review Pub Date : 2022-01-01 DOI:10.30765/er.1894
Kooshyar Lahsaei, M. Vaghefi, Farid Sedighi, C. A. Chooplou
{"title":"利用ansys fluent对不同相对曲率半径弯道中发散墩流态进行数值模拟","authors":"Kooshyar Lahsaei, M. Vaghefi, Farid Sedighi, C. A. Chooplou","doi":"10.30765/er.1894","DOIUrl":null,"url":null,"abstract":"In this work, the three-dimensional flow around piers in river meanders under rigid bed conditions was modeled. The software ANSYS FLUENT was used to perform the simulation. The study was carried out in a 180° curve accompanied by cylindrical piers with a diameter of 5 cm and a slope angle of 21° under rigid bed conditions. The results of the comparisons showed that this model can help simulate the flow pattern around inclined bridge piers in bended channels with acceptable accuracy. To analyze the flow pattern, the work was followed by studying the effect of the parameters that affect the physics of the problem: the relative radius of curvature of the curve, the location of the piers within the 180° curve, and the arrangement of the piers relative to the flow direction. The results showed that increasing the relative radius of curvature as well as the range of the bend reduced the tangential velocity values; the minimum tangential velocity value occurred at a relative radius of curvature of 5. With the pier group installed in the direction of flow, the maximum secondary flow power occurred at the 60° position at about 18.8%, while with the pier group installed across the flow, the maximum secondary flow power occurred at the 120° position at 14.2%. A comparison of the vorticity at the perpendicular and downstream positions showed that the vorticity values at the 60° and 120° positions were greater than the corresponding values at the 90° position in both cases.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical simulation of flow pattern at a divergent pier in a bend with different relative curvature radii using ansys fluent\",\"authors\":\"Kooshyar Lahsaei, M. Vaghefi, Farid Sedighi, C. A. Chooplou\",\"doi\":\"10.30765/er.1894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the three-dimensional flow around piers in river meanders under rigid bed conditions was modeled. The software ANSYS FLUENT was used to perform the simulation. The study was carried out in a 180° curve accompanied by cylindrical piers with a diameter of 5 cm and a slope angle of 21° under rigid bed conditions. The results of the comparisons showed that this model can help simulate the flow pattern around inclined bridge piers in bended channels with acceptable accuracy. To analyze the flow pattern, the work was followed by studying the effect of the parameters that affect the physics of the problem: the relative radius of curvature of the curve, the location of the piers within the 180° curve, and the arrangement of the piers relative to the flow direction. The results showed that increasing the relative radius of curvature as well as the range of the bend reduced the tangential velocity values; the minimum tangential velocity value occurred at a relative radius of curvature of 5. With the pier group installed in the direction of flow, the maximum secondary flow power occurred at the 60° position at about 18.8%, while with the pier group installed across the flow, the maximum secondary flow power occurred at the 120° position at 14.2%. A comparison of the vorticity at the perpendicular and downstream positions showed that the vorticity values at the 60° and 120° positions were greater than the corresponding values at the 90° position in both cases.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/er.1894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.1894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文对刚性河床条件下曲流桥墩周围的三维流动进行了模拟。采用ANSYS FLUENT软件进行仿真。在刚性床床条件下,采用180°曲线,直径为5 cm,坡角为21°的圆柱形桥墩进行研究。结果表明,该模型能较好地模拟弯曲河道中倾斜桥墩周围的流态,具有较好的精度。为了分析流态,接下来研究了影响问题物理性质的参数:曲线的相对曲率半径、180°曲线内桥墩的位置以及桥墩相对于水流方向的布置。结果表明:增大相对曲率半径和弯曲范围,切向速度值减小;最小切向速度值出现在相对曲率半径为5处。当桥墩组安装在顺流方向时,60°位置的二次流功率最大,约为18.8%;当桥墩组安装在顺流方向时,120°位置的二次流功率最大,约为14.2%。垂直位置和下游位置涡度的比较表明,60°和120°位置的涡度值都大于90°位置的涡度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of flow pattern at a divergent pier in a bend with different relative curvature radii using ansys fluent
In this work, the three-dimensional flow around piers in river meanders under rigid bed conditions was modeled. The software ANSYS FLUENT was used to perform the simulation. The study was carried out in a 180° curve accompanied by cylindrical piers with a diameter of 5 cm and a slope angle of 21° under rigid bed conditions. The results of the comparisons showed that this model can help simulate the flow pattern around inclined bridge piers in bended channels with acceptable accuracy. To analyze the flow pattern, the work was followed by studying the effect of the parameters that affect the physics of the problem: the relative radius of curvature of the curve, the location of the piers within the 180° curve, and the arrangement of the piers relative to the flow direction. The results showed that increasing the relative radius of curvature as well as the range of the bend reduced the tangential velocity values; the minimum tangential velocity value occurred at a relative radius of curvature of 5. With the pier group installed in the direction of flow, the maximum secondary flow power occurred at the 60° position at about 18.8%, while with the pier group installed across the flow, the maximum secondary flow power occurred at the 120° position at 14.2%. A comparison of the vorticity at the perpendicular and downstream positions showed that the vorticity values at the 60° and 120° positions were greater than the corresponding values at the 90° position in both cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Review
Engineering Review ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
0.00%
发文量
8
期刊介绍: Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.
期刊最新文献
Derivation matrix in mechanics – data approach Enhancement of the behaviour of reinforced concrete dapped end beams including single-pocket loaded by a vertical concentrated force Contribution of the two rectifiers reconfiguration to fault tolerance connected to the grid network to feed the GMAW through processor-in-the-loop An adaptive neuro-fuzzy based on a fractional-order proportional integral derivative design for a two-legged robot with an improved swarm algorithm Thermal performance improvement of artificially roughened solar air heater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1