脊髓的背角

Michael G Irwin
{"title":"脊髓的背角","authors":"Michael G Irwin","doi":"10.32388/kasui6","DOIUrl":null,"url":null,"abstract":"Recent advances in techniques, especially the intraneuronal injection of the enzyme horseradish peroxidase, have led to a new ear in our understanding of spinal cord structure and function. Input to the cord is precisely organized: the primary afferent fibres from different types of receptors distribute their anatomically specific collaterals to particular parts of the dorsal horn, afferent fibres from the skin lay down a precise somatotopic map, input to the dorsal horn from descending systems is also distributed in a localized way. The neurones of the dorsal horn are varied in both structure and function, even so some quite specific cell types can be identified and the dendritic trees may respect laminar boundaries as determined cytoarchitectonically (although the majority of neurones have dendrites that cut across these boundaries). The output pathways from the dorsal horn are many and various, but again they arise from cells in definite parts of the dorsal horn. The dorsal horn must be considered as a well-organized, and complex, part of the central nervous system. It cannot be considered as a structural or functional unit but is made up of many interacting parts that process input from the primary afferent fibres, from other levels of the spinal cord and from many descending pathways from the brain.","PeriodicalId":77774,"journal":{"name":"Quarterly journal of experimental physiology (Cambridge, England)","volume":"67 2 1","pages":"193-212"},"PeriodicalIF":0.0000,"publicationDate":"1982-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"The dorsal horn of the spinal cord.\",\"authors\":\"Michael G Irwin\",\"doi\":\"10.32388/kasui6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in techniques, especially the intraneuronal injection of the enzyme horseradish peroxidase, have led to a new ear in our understanding of spinal cord structure and function. Input to the cord is precisely organized: the primary afferent fibres from different types of receptors distribute their anatomically specific collaterals to particular parts of the dorsal horn, afferent fibres from the skin lay down a precise somatotopic map, input to the dorsal horn from descending systems is also distributed in a localized way. The neurones of the dorsal horn are varied in both structure and function, even so some quite specific cell types can be identified and the dendritic trees may respect laminar boundaries as determined cytoarchitectonically (although the majority of neurones have dendrites that cut across these boundaries). The output pathways from the dorsal horn are many and various, but again they arise from cells in definite parts of the dorsal horn. The dorsal horn must be considered as a well-organized, and complex, part of the central nervous system. It cannot be considered as a structural or functional unit but is made up of many interacting parts that process input from the primary afferent fibres, from other levels of the spinal cord and from many descending pathways from the brain.\",\"PeriodicalId\":77774,\"journal\":{\"name\":\"Quarterly journal of experimental physiology (Cambridge, England)\",\"volume\":\"67 2 1\",\"pages\":\"193-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly journal of experimental physiology (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32388/kasui6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly journal of experimental physiology (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32388/kasui6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

近年来技术的进步,特别是神经内注射辣根过氧化物酶,使我们对脊髓的结构和功能有了新的认识。脊髓的输入是精确组织的:来自不同类型受体的主要传入纤维将其解剖学上特定的分支分布到背角的特定部位,来自皮肤的传入纤维绘制了精确的体位图,来自下行系统的输入也以局部方式分布到背角。背角的神经元在结构和功能上都是不同的,即使如此,一些非常特殊的细胞类型也可以被识别出来,树突状树可能尊重层流边界作为确定的细胞结构(尽管大多数神经元的树突穿过这些边界)。背角的输出通路是多种多样的,但它们都起源于背角特定部位的细胞。背角必须被认为是中枢神经系统的一个组织良好、复杂的部分。它不能被认为是一个结构或功能单元,而是由许多相互作用的部分组成,这些部分处理来自主要传入纤维、来自脊髓其他层次和来自大脑的许多下行通路的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The dorsal horn of the spinal cord.
Recent advances in techniques, especially the intraneuronal injection of the enzyme horseradish peroxidase, have led to a new ear in our understanding of spinal cord structure and function. Input to the cord is precisely organized: the primary afferent fibres from different types of receptors distribute their anatomically specific collaterals to particular parts of the dorsal horn, afferent fibres from the skin lay down a precise somatotopic map, input to the dorsal horn from descending systems is also distributed in a localized way. The neurones of the dorsal horn are varied in both structure and function, even so some quite specific cell types can be identified and the dendritic trees may respect laminar boundaries as determined cytoarchitectonically (although the majority of neurones have dendrites that cut across these boundaries). The output pathways from the dorsal horn are many and various, but again they arise from cells in definite parts of the dorsal horn. The dorsal horn must be considered as a well-organized, and complex, part of the central nervous system. It cannot be considered as a structural or functional unit but is made up of many interacting parts that process input from the primary afferent fibres, from other levels of the spinal cord and from many descending pathways from the brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The school of Bernard Katz. London, 5 April 1989. Proceedings. Extracellular magnesium regulates acetylcholine-evoked amylase secretion and calcium mobilization in rat pancreatic acinar cells. Structure and function of the carotid body in New Zealand genetically hypertensive rats. Intracellular signalling and regulation of gastric acid secretion. Metabolism and inactivation of gastrin releasing peptide by endopeptidase-24.11 in the dog.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1